
CamScanner

3

CamScanner

CamScanner

CamScanner

CamScanner

CamScanner

CamScanner

CamScanner

CamScanner

CamScanner

CamScanner

CamScanner

CamScanner

CamScanner

CamScanner

CamScanner

CamScanner

CamScanner

CamScanner

 JavaFX

Introduction

JavaFX is a set of Java graphics libraries for creating Java GUI applications, just like Java

AWT and Swing.

JavaFX was originally targeted for Rich Interface Application (RIA, introduced in 2002), i.e.,

GUI webapp delivered thru a browser's plugin (competing with Adobe Flash, Microsoft

Silverlight and Java Applets). However, the trend today is to use HTML5/JavaScript-based,

instead of plug-in-based framework. Moreover, browsers (such as Firefox) has stopped

supporting plug-ins (such as Java Plug-in for Applets).

History

Sun Microsystems created the Java Programming Language and presented JDK 1.0 in

1995/96. To support GUI programming, Java introduced AWT (Abstract Windowing Toolkit)

in JDK 1.1 (1997), and Swing in JDK 1.2 (1998). But many developers felt Swing was over-

complex and Java on the desktop never really took off as it did on the server.

Sun Microsystems tried several ways to make it easier to create Java GUI applications. One

of these was a scripting language called JavaFX Script 1.0 (2008) which allows developers to

build much more complex user Interfaces. But JavaFX Script was not Java. It is a totally new

language and never really caught on with Java developers.

When Oracle acquired Sun Microsystems, they killed off JavaFX as a scripting language but

added its functionality into the Java Language as JavaFX 2.0 (2011). They enhanced it as the

new way to develop user interfaces, intended to replace Swing. Starting from JDK 8 (2014),

JavaFX was part of JDK (as JavaFX 8).

Oracle will continue to maintain the Swing library but will not enhance it. Swing and JavaFX

can be used together. But for writing new Java applications, JavaFX is recommended as it

offers a much simpler way to create desktop applications, and you can write more powerful

applications with much less code.

JavaFX Key Features

JavaFX's key features include:

1. From JavaFX 2.0, JavaFX is written in Java (no need to learn a new language).

Starting from JDK 8, JavaFX is part of JDK.

2. Support CSS for skinning.

3. Support FXML: a XML-based declarative language to define the structure of the user

interface separated from the application code.

4. Swing interoperability: You can use Swing UI in JavaFX application.

5. WebView: for embedding HTML contents.

6. 2D/3D Graphics

CamScanner

7. Media: audio (mp3, wav, aiff), video (flv) and image.

8. Provide a JavaScript engine.

In general, a JavaFX application contains one or more stages which corresponds to windows.

Each stage has a scene attached to it. Each scene can have an object graph of controls, layouts

etc. attached to it, called the scene graph. These concepts are all explained in more detail

later. Here is an illustration of the general structure of a JavaFX application:

Stage

The stage is the outer frame for a JavaFX application. The stage typically corresponds to a

window. In the early days where JavaFX could run in the browser, the stage could also refer

to the area inside the web page that JavaFX had available to draw itself.

Since the deprecation of the Java browser plugin JavaFX is mostly used for desktop

applications. Here, JavaFX replaces Swing as the recommended desktop GUI framework.

And I must say, that JavaFX looks a whole lot more consistent and feature rich than Swing.

When used in a desktop environment, a JavaFX application can have multiple windows open.

Each window has its own stage.

Each stage is represented by a Stage object inside a JavaFX application. A JavaFX

application has a primary Stage object which is created for you by the JavaFX runtime. A

JavaFX application can create additional Stage objects if it needs additional windows open.

For instance, for dialogs, wizards etc.

CamScanner

Scene

To display anything on a stage in a JavaFX application, you need a scene. A stage can only

show one scene at a time, but it is possible to exchange the scene at runtime. Just like a stage

in a theater can be rearranged to show multiple scenes during a play, a stage object in JavaFX

can show multiple scenes (one at a time) during the life time of a JavaFX application.

You might wonder why a JavaFX application would ever have more than one scene per stage.

Imagine a computer game. A game might have multiple "screens" to show to the user. For

instance, an initial menu screen, the main game screen (where the game is played), a game

over screen and a high score screen. Each of these screens can be represented by a different

scene. When the game needs to change from one screen to the next, it simply attaches the

corresponding scene to the Stage object of the JavaFX application.

A scene is represented by a Scene object inside a JavaFX application. A JavaFX application

must create all Scene objects it needs.

Scene Graph

All visual components (controls, layouts etc.) must be attached to a scene to be displayed,

and that scene must be attached to a stage for the whole scene to be visible. The total object

graph of all the controls, layouts etc. attached to a scene is called the scene graph.

Nodes

All components attached to the scene graph are called nodes. All nodes are subclasses of a

JavaFX class called javafx.scene.Node .

There are two types of nodes: Branch nodes and leaf nodes. A branch node is a node that can

contain other nodes (child nodes). Branch nodes are also referred to as parent nodes because

they can contain child nodes. A leaf node is a node which cannot contain other nodes.

Controls

JavaFX controls are JavaFX components which provide some kind of control functionality

inside a JavaFX application. For instance, a button, radio button, table, tree etc.

For a control to be visible it must be attached to the scene graph of some Scene object.

Controls are usually nested inside some JavaFX layout component that manages the layout of

controls relative to each other.

JavaFX contains the following controls:

• Accordion

• Button

• CheckBox

• ChoiceBox

• ColorPicker

• ComboBox

CamScanner

• DatePicker

• Label

• ListView

• Menu

• MenuBar

• PasswordField

• ProgressBar

• RadioButton

• Slider

• Spinner

• SplitMenuButton

• SplitPane

• TableView

• TabPane

• TextArea

• TextField

• TitledPane

• ToggleButton

• ToolBar

• TreeTableView

• TreeView

Layouts

JavaFX layouts are components which contains other components inside them. The layout

component manages the layout of the components nested inside it. JavaFX layout

components are also sometimes called parent components because they contain child

components, and because layout components are subclasses of the JavaFX

class javafx.scene.Parent.

A layout component must be attached to the scene graph of some Scene object to be visible.

JavaFX contains the following layout components:

• Group

• Region

• Pane

CamScanner

• HBox

• VBox

• FlowPane

• BorderPane

• BorderPane

• StackPane

• TilePane

• GridPane

• AnchorPane

• TextFlow

Nested Layouts

It is possible to nest layout components inside other layout components. This can be useful to

achieve a specific layout. For instance, to get horizontal rows of components which are not

laid out in a grid, but differently for each row, you can nest multiple HBox layout

components inside a VBox component.

Charts

JavaFX comes with a set of built-in ready-to-use chart components, so you don't have to code

charts from scratch everytime you need a basic chart. JavaFX contains the following chart

components:

• AreaChart

• BarChart

• BubbleChart

• LineChart

• PieChart

• ScatterChart

• StackedAreaChart

• StackedBarChart

2D Graphics

JavaFX contains features that makes it easy to draw 2D graphics on the screen.

3D Graphics

JavaFX contains features that makes it easy to draw 3D graphics on the screen.

CamScanner

Audio

JavaFX contains features that makes it easy to play audio in JavaFX applications. This is

typically useful in games or educational applications.

Video

JavaFX contains features that makes it easy to play video in JavaFX applications. This is

typically useful in streaming applications, games or educational applications.

WebView

JavaFX contains a WebView component which is capable of showing web pages (HTML5,

CSS etc.). The JavaFX WebView component is based on WebKit - the web page rendering

engine also used in Chrome and Safari.

The WebView component makes it possible to mix a desktop application with a web

application. There are times where that is useful. For instance, if you already have a decent

web application, but need some features which can only be provided sensibly with a desktop

application - like disk access, communication with other network protocols than HTTP (e.g

UDP, IAP etc.) .

JavaFX Application Structure

A JavaFX application (javafx.application.Application) comprises:

1. Stage (javafx.stage.Stage)

2. Scene (javafx.scene.Scene)

3. A hierarchical scene graph of nodes (javafx.scene.Node)

Application and Its Life Cycle

A JavaFX application extends from javafx.application.Application. The JavaFX runtime

maintains an Application's life cycle as follows:

CamScanner

1. It constructs an instance of Application.

2. It calls the Application's init() method.

3. It calls the Application's start(javafx.stage.Stage) method, and passes the primary

stage as its argument.

4. It waits for the Application to complete (e.g., via Platform.exit(), or closing all the

windows).

5. It calls the Application's stop() method.

[TODO] life cycle diagram

The start() is an abstract method, that must be overridden. The init() and stop() has default

implementation that does nothing.

If you use System.exit(int) to terminate the application, stop() will not be called.

