Programming Technology BY: Mukunda Paudel

paudelmuku@gmail.com

Chapter-7 Java Exception Handling

Error and Exception:

*
0.0

Both are subclass of the built-in class “Throwable”

Error:

L)

Errors are the conditions which cannot get recovered by any handling
techniques (or code of the program) and occur due to the lack of the system
resources. Errors can’t be recovered by any means because they can’t be
created, thrown, caught or replied. It surely cause termination of the program
abnormally.

Errors are caused due to the catastrophic failure which usually can’t be
handled by your program.

Errors belong to unchecked type, as compiler do not have any knowledge

about its occurrence and error always occur in runtime.
Some of the examples of errors are Out of memory error or a System crash
error.

Exceptions

\/
N

*
0.0

*
0’0

* *
0.0 0‘0

An exception is an unwanted or unexpected event, which occurs during the
execution of a program 1i.e. at run time that disrupts the normal flow of the
program’s instructions.

Exceptions are the conditions that occur at runtime and may cause the
termination of program but they are recoverable using try, catch and throw
keywords

Most of the times exceptions are caused due to the code of our program. But,
exceptions can be handled by the program itself, as exceptions are
recoverable.

Exceptions are handled by using three keywords “try”, “catch”, “throw”.
Simply we can say that the mistakes occurred due to the improper code are
called exceptions. For example, if a requested class is not found, or a
requested method is not found.

BE-Computer Il /Il Pokhara University, EEC

Programming Technology

BY: Mukunda Paudel
paudelmuku@gmail.com

Difference between Error and Exception:

Error

Exception

1. Errors are the conditions
which occur due to the lack of
the system resources.

1. Exception is an unwanted or unexpected
event, which occurs during the execution of a
program and may cause the termination of
program.

2.Errors cannot get recovered
by any handling techniques
(or code of the program)

2. The use of try-catch blocks can handle
exceptions and recover the application from
them.

3. Errors are classified as
“unchecked” In java because
they occur at run-time and are
not known by the compiler.

3. Exceptions in java can be “checked” or
“unchecked,” meaning they may or may not be
caught by the compiler.

4. They are defined in
java.lang.Error package.

4. They are defined in java.lang.Exception
package

5. Example: OutOfMemory”
and “StackOverflow”

5.
5.1. Example of Checked Exceptions =
SQLException, IOException

5.2. Example of Unchecked
Exceptions—> ArrayIndexOutOfBoundException,
NullPointerException, ArithmeticException.

Exception Handling in Java

What is Exception in Java?

On Dictionary:

Programmatic approach:

Exception is an abnormal condition.

Exception is an event that disrupts the normal flow
of the program.

It is an object which is thrown at runtime.

What is Exception handling in java?

It is a mechanism to handle runtime errors.

BE-Computer Il /Il

Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

What type of runtime Errors?

Like, ClassNotFoundException,
IOException,
SQLException,
RemoteException, etc.

Why we use Exception Handling?

v" An exception normally disrupts the normal flow of the application
that 1s why we use exception handling.

Example: Suppose there are 5 statements in your program

Statement 1;
Statement 2;
Statement 3; //exception occurs
Statement 4;
Statement 5;

Suppose, exception is occurs at statement 3, then he rest of the code will not be

executed 1.e. statement 4 and 5 will not be executed. If exception handling is
implemented, the rest of the statement will be executed.

What is the core Advantage of Exception Handling?

v To maintain the normal flow of the application.

Exception Hierarchy in java

% Root or Base class of Exception hierarchy > Throwable
(java.lang.Throwable)

% Subclass a) Exception
b) Error (both a and b are inherited)

% Sece following figure

BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

Throwable
Exception Error
— IOException — StackOverflowError
— SQLException — VirtualMachineError
ClassNot .
| FoundException OutOfMemoryError T
|I |I
— RuntimeException
— ArithmeticException

— NullPointerException

NumberFormat
Exception

IndexOutOf
BoundsException

ArraylndexOutOf
BoundsException

BoundsException

| StringIndexOutOf _H

Figure: exception Hierarchy in java

4
BE-Computer 1l /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

Types of Java Exceptions

Generally,

“ Exceptions in java are classified into 2 (Two) types (Checked and
Unchecked) and
¢ Error is considered as Unchecked Exception

But, Oracle, categorizes the java exception into 3 (Three) different types
including Error.

1) Checked Exception:

“+ Exceptions that are checked or occurs at compile time.
% Also called as compile time exceptions

% These exceptions cannot simply be ignored at the time of compilation, the
programmer should take care of (handle) these exceptions.

OR

If some code within a method throws a checked exception, then the method
must either handle the exception or it must specify the exception
using throws keyword.

For example:

v TOException

v SQLException

v DataAccessException

v" ClassNotFoundException
v" InvocationTargetException

Let us consider the following Java program

Program which opens file at location “C:\MukuJava\Chk Exp FEg.txt” and prints
the first TEN lines of it.

Let’s simplify the statement,

Location: MukuJava folder inside C drive of your PC, File name: Chk Exp eg
and file type => rext.

Therefore “C:\MukuJava\Chk Exp Eg.txt”

5
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

import java.io.*;

Class ChkExpEg
{

Public static void main (String [] args)

{
FileReader file = new FileReader("C:\\MukuJava\\Chk Exp eg.txt");

BufferedReader fileInput = new BufferedReader(file);
// Print first TEN (10) lines of file "C:\MukuJava\Chk Exp eg.txt"
for (int counter = 0; counter < 10; counter++)
System.out.printin(fileInput.readLine());

fileInput.close();

}
b

» The above program doesn’t compile, because the function main () uses
FileReader() and FileReader() throws a checked
exception FileNotFoundException.

» Above program also uses readLine() and close() methods, and these
methods also throw checked exception IOException

o/p

Exception in thread "main" java.lang.RuntimeException: Uncompilable source
code - unreported exception java.io.FileNotFoundException; must be caught or
declared to be thrown at ChkExpEg.main(ChkExpEg.java:5)

+ By using throws, or try-catch block. This type of exception can be fixed.
2) Unchecked Exception:

+ Exceptions that are not checked at compiled time.
+ Also called as Runtime Exceptions

6
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

* Runtime exceptions are ignored at the time of compilation.

* An unchecked exception is an exception that occurs at the time of execution.
For example bugs, logic error etc.

+ Exceptions under Error and RuntimeException classes are unchecked
exceptions in java.

Example:

v" NullPointerException

v ArrayIndexOutOfBound

v' Tllegal ArgumentException
v TllegalStateException etc.

Let us consider the following Java program.

Class UnChkExpEg {

Public static void main(String args[])

{
inta=0;
intb=12;
intc=b/a;
}

}

v Above program compiles successfully, but throws ArithmeticException
when run. Because, ArithmeticException is an unchecked exception
Therefore compiler allows it to compile.

O/P:

Exception in thread "main" java.lang. ArithmeticException: / by zero at
UnChkExpEg.main(UnChkExpEg.java:5)

Java Result: 1

BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

Exception Handling
v Exception Handling is the Process of maintaining the normal flow of the
application

v Exception handling prevents the abnormal termination of the program.

Used five key words

Try:

v" The try block contain statements which may generate exceptions.
v" The try block must be followed by either catch or finally.
v Try block can’t be used alone.

Catch:

v The catch block defines the action to be taken, when an exception
occur.

v Catch block must be preceded by try block

v" Catch block can't be used alone. It can be followed by finally block
later.

Throw:

v" When an exception occur in try block, it is thrown to the catch block
using throw keyword.

Throws:

v Throws keyword is used in situation, when we need a method to throw
an exception.

v Throws keyword is used to declare exceptions.

v" It doesn't throw an exception.

v" It specifies that there may occur an exception in the method.

v’ It is always used with method signature.

Finally:
v" If exception occur or not, finally block will always execute.

8
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

v" Finally block is used to execute the important code of the program
Let’s make a story:
+ Suppose we are in a smartphone manufacturing company

1. After the smartphone is made (Production Department) every company
test the product

If the product pass the test (TEST DEPARTMENT) then it is OK to
ship. This is our Try block

2. But if'test fails then it is resend to production line (Manufacturing
Department). This is our throw

3. Production line is like our catch block who know how to fix that error

But there can be multiple catch statements..... WHY?

% Because there can be multiple types of error for example
Errors while producing smartphones

1. Display screen error

2. Some hardware fault

3. Some software fault etc.

So, there will be multiple catch statements depending on possible error

BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

How to use try catch throw in program?

Example: 01

Let’s write a program for bank in which the user enters the amount to deposit in his
/ her account:

public static void main(string[] args)

Scanner sc= new Scanner (System.in);
System.Out.Println(*“**welcome to our Bank..* *”);
System.Out.Println (Enter the amount you want to deposit in your Account™);
int money= sc.nextInt();
try {
if(money > 0)

1
system.Out.println(” Deposited successfully™);

Throw(money);

catch(int n);

f
v

system.out.println(”Y ou have entered a negative value, please try again...”);

Mukundapaudel.com.

10
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

Example: 02 Java Exception Handling where we using a try-catch statement to
handle the exception.

JavaExceptionExample

void main(String args[])

int Result = 100 / ©;
¥

catch (ArithmeticException e)

{
System.out.println(e);

}

System.out.println("Rest of the code...

QOutput:

Exception in thread main java.lang. ArithmeticException:/ by zero
Rest of the code...

Key Points
Java exception handling is involves following keywords

v try,

v’ catch,

v throw,

v’ throws, and

v" Finally.
» Program statements that raise exceptions are placed within a try block.
» If an exception occurs within the try block, it is thrown.

11
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

» By using catch block thrown exception will catches and handle it in some
rational manner.

» System-generated exceptions are automatically thrown by the Java run-time
system.

» To manually throw an exception, use the keyword throw.

» Any exception that is thrown out of a method must be specified as such by
a throws clause.

» Any code that absolutely must be executed after a try block completes is put
in a finally block.

Example: 03

Let’s consider the java program by defining an array of size 5. Suppose you are
trying to access the elements at index 5 then it will throws an exception (because
you can access elements only from index 0 to 4) and program terminates.

Therefore, the statement inside Syt nReIRyeindl@K will never execute. To execute
it, we must handle the exception using try-catch method.

ItsMyExcepionHndlingExample {

void main (String[] args) {

int[] arr = new int[5];

int 1 = arr[5];

System.out.println("This is the example of User defined Exception Handling");

Exception in thread “main” java.lang.ArrayIndexOutOfBoundsException: Index 5 out of bounds for length 5
at CustomizedExcepiontndlingExample.main(class CustomizedExcepiontndlingExample. java:9)
PS C:\Users\paude> I

How to use try-catch clause to handle such exception?

12
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

}
catch (ExceptionTypel ex0Objl) {

¥
catch (ExceptionType2 ex0bj2) {

finally {

Example: 04

Consider a java program to demonstrate the use of try, catch and finally
block in exception handling

ExampleEec

void main(String[] args)

try

{
System.out.println(7 / @);

System.out.println("Hello iam Try block. i have code that may rise exception..");

}

catch (ArithmeticException e)
{
System.out.println("I am the catch block and I am the solution of
Exception: " + e.getMessage());

}

catch (NullPointerException e)

{

System.out.println("Exception:" + e.getMessage());

BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

System.out.println("hey ! I am finally block and je bhaye ni ma chalchhu..");
}

Output

$javac ExampleEec.java
$java -Xmx128M -Xms16M ExampleEec
Exception: / by zero

hey! I am finally block and Je bhaye ni ma chalchhu..
Example-05: Use of try, catch and finally in java exception Handling

ExampleofTCF {
void main(String args[]) {

try{
System.out.println("This is Try block");
int num=55/0;
System.out.println(num);

catch(ArithmeticException e){

System.out.println("This is Catch block");
System.out.println("ArithmeticException --> Number divided by zero);

finally{
System.out.println("This is Finally block");

}

System.out.println("Rest of the code continues...");

Output

14
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

This is Try block

This is Catch block

ArithmeticException --> Number divided by zero

This is Finally block

Rest of the code continues...

Throwable

% The Throwable class provides a string variable that can be set by the
subclasses to provide a detail message that provides more information of the
exception occurred.

%+ All classes of Throwables define a one-parameter constructor that takes a
string as detail message.

¢ The class Throwable provides getMessage() functions to retrieve an
exception.

Throw vs Throws

THROW THROWS
1. Throw keyword is used to throw an 1. Throws keyword is used to declare an
exception explicitly. exception with the method name. It works like

the try-catch block because the caller needs to
handle the exception thrown by throws.

throw new
ArithmeticException(" Arithmetic throws ArithmeticException;
Exception");

2. Throw is followed by an instance of 2. Throws is followed by exception class names
Exception class

3.Throw keyword always use the object | 3. Throws keyword uses the exception class.
of exception class

4. Throw keyword is used within the body | 4. Throws is used in method signature to
of a method declare the exceptions.

15
BE-Computer Il /I Pokhara University, EEC

Programming Technology

BY: Mukunda Paudel
paudelmuku@gmail.com

void usingThrowKeyword()

try

//throwing arithmetic exception using
throw

throw new ArithmeticException("You
can’t divide a number by zero.");

catch (ArithmeticException e)

{

// handling exception

//arithmetic exception using throws

void usingThrowsKeyword() throws
ArithmeticException

//Statements

BE-Computer Il /Il

16

Pokhara University, EEC

Programming Technology

BY: Mukunda Paudel
paudelmuku@gmail.com

5. By using the throw keyword only one
exception can be declare at a time.

void usingThrowKeyword()

{

//By using of throw keyword single
exception is throwing

throw new ArithmeticException("You
can’t divide a number by zero.");

b

5. Multiple exceptions can be handle by
declaring them using the throws keyword. The
throws keyword uses the comma (,) to separate
the exceptions.

void myMethod() throws ArithmeticException,
NullPointerException

{

// handling exception

6.Example:
public class ThrowExample {
public static void main(String[] args)

{

//'Use of unchecked Exception

try {
// double x=7/ 0;

throw new ArithmeticException();

}

catch (ArithmeticException ¢)

{

6. Example:
import java.i0.IOException;
public class UseOfThrowAndThrows {

public static void main(String[] args)
throws IOException

{
h

Output:
Exception in thread "main"
java.io.IOException

atUseOfThrowAndThrows.main(UseOfThrow.
java:7)

17

BE-Computer Il /Il

Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

e.printStack Trace();

}
b
b

QOutput:
java.lang.ArithmeticException: / by zero

atUseOfThrow.main(UseOfThrow.java:§)

User-defined / Custom Exception in Java

+» Java provides the facility to create your own exception class and throws that
exception using ‘throw’ keyword is called User defined Custom Exception in
java.

%+ This can be implemented by extending the class Exception.

Simply we can say that,

Custom exceptions in Java are those exceptions which are created by a
programmer to meet their specific requirements of the application.

For example:

A banking application, a customer whose age is lower than 18 years, the program
throws a custom exception indicating “needs to open joint account”.

suppose a Voting Application in Nepal, If a person’s age entered is less than 18

years, the program throws “Not eligible for Voting” as a custom exception in
context of Nepal.

See the Following Example:

18
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

UserDefinedExpEg

void main(String args[])

throw new ItsMyException(20);

1
I}

catch(ItsMyException ¢)

f
1

System.out.println(e) ;

ItsMyException Exception

int x;

[tsMyException(int y)

f
L

String toString()

return ("Exception Number = "+x) ;

Exception Number = 20
PS C:\Users\paude> ||

BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

Tips on Java Exception Handling

1. Never swallow the exception in catch block

catch (NoSuchMethodException e)

{

return

% Without handling with meaningful description or re-throwing the exception,
returning null it totally swallows the exception, losing the cause of error
forever.

% If you don’t know the reason of failure, how you would prevent it in future?

2. Declare the specific checked exceptions that your method can throw

void MyMethod() throws Exception

% Declare the specific checked exceptions that your method can throw. If there
are just too many such checked exceptions, you should probably wrap them
in your own exception and add information to in exception message.

% Refactor code if possible.

void MyMethod() throws SpecificExceptionl, SpecificException2

3. Do not catch the Exception class rather catch specific sub classes

try {
MyMethod();

} catch (Exception e) {
LOGGER.error("method has failed", e);

}

%+ If the method you are calling later adds a new checked exception to its
method signature, the developer’s intent is that you should handle the
specific new exception.

20
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

¢ If your code just catches Exception (or Throwable), you’ll never know about
the change and the fact that your code is now wrong and might break at any
point of time in runtime.

4. Never catch Throwable class

%+ Java errors are also subclasses of the Throwable.

% Errors are irreversible conditions that cannot be handled by JVM itself and
for some JVM implementations, JVM might not actually even invoke your
catch clause on an Error.

5. Always correctly wrap the exceptions in custom exceptions so that stack
trace is not lost

catch (NoSuchMethodException e) {
throw new MyServiceException("Some information: " + e.getMessage());

}

catch (NoSuchMethodException e) {
throw new MyServiceException("Some information: " , e);

}

6. Either log the exception or throw it but never do the both

catch (NoSuchMethodException e) {
LOGGER.error("Some information", e);
throw e;

}

“ In this example, logging and throwing will result in multiple log messages in
log files, for a single problem in the code, and makes life hell for the
engineer who is trying to dig through the logs.

21
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

7. Never throw any exception from finally block
try {

MyMethod () ;
} finally {

cleanUp();

% In this example, if MyMethod() throws an exception, and in the finally block
also, cleanUp() throws an exception, that second exception will come out of
method and the original first exception (correct reason) will be lost forever.

% If the code that you call in a finally block can possibly throw an exception,
make sure that you either handle it, or log it. Never let it come out of the
tinally block.

8. Always catch only those exceptions that you can actually handle

% Most important concept.

< Don’t catch any exception just for the sake of catching it.

% Catch any exception only if you want to handle it or, you want to provide
additional contextual information in that exception.

catch (NoSuchMethodException e) {
throw e;

}

9. Use finally blocks instead of catch blocks if you are not going to handle
exception

% If inside your method you are accessing Mymethod 2, and method 2 throw
some exception which you do not want to handle in method 1, but still want
some cleanup in case exception occur, then do this cleanup in finally block.

* Do not use catch block.

try {
MyMethod();

} finally {
cleanUp();

}

22
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

10. Remember “Throw early catch late” principle

% Most famous principle about Exception handling.

¢ It basically says that you should throw an exception as soon as you can, and
catch it late as much as possible. You should wait until you have all the
information to handle it properly.

11. Always clean up after handling the exception

% If you are using resources like database connections or network connections,
make sure you clean them up.

% If the API you are invoking uses only unchecked exceptions, you should still
clean up resources after use, with try — finally blocks.

% Inside try block access the resource and inside finally close the resource.
Even if any exception occur in accessing the resource, then also resource
will be closed gracefully.

12. Throw only relevant exception from a method

% Relevancy is important to keep application clean.

% A method which tries to read a file; if throws NullPointerException then it
will not give any relevant information to user.

% Instead it will be better if such exception is wrapped inside custom exception
e.g. NoSuchFileFoundException then it will be more useful for users of that
method.

13. Validate user input to catch adverse conditions very early in request
processing

% Always validate user input in very early stage, even before it reached to
actual controller.

¢ It will help you to minimize the exception handling code in your core
application logic.

% It also helps you in making application consistent if there is some error in
user input.

For example: consider a user registration application and you are following below
logic.

23
BE-Computer 1l /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

Validate User

Insert User

Validate address

Insert address

If problem the Rollback everything

Validate User

Validate address

Insert User

Insert address

If problem the Rollback everything

14. Always include all information about an exception in single log message

LOGGER.debug("Using cache sector A");
LOGGER.debug("Using retry sector B");

LOGGER.debug("Using cache sector A, using retry sector B");

% Using a multi-line log message with multiple calls to LOGGER.debug() may
look fine in test case, but when it shows up in the log file of an app server
with thousands of threads running in parallel, all dumping information to
the same log file, your two log messages may end up spaced out 1000 lines
apart in the log file, even though they occur on subsequent lines in your
code.

15. Pass all relevant information to exceptions to make them informative as
much as possible

% It is important to make exception messages and stack traces useful and
informative.

% What is the use of a log, if you are not able to determine anything out of it?

% These type of logs just exist in your code for decoration purpose.

24
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

16. Always terminate the thread which it is interrupted

while () o
try {
Thread.Stop(1060000) ;
} catch (InterruptedException e)

{

}

TakeAction();

}

% InterruptedException is a clue to code, that it should stop whatever it’s
doing.

% Some common use cases for a thread getting interrupted are the active
transaction timing out, or a thread pool getting shut down.

% Instead of ignoring the InterruptedException, your code should do its best to
finish up what it’s doing, and finish the current thread of execution.

while () {
try {
Thread.Stop (16600600) ;
} catch (InterruptedException e) {
break;

}

}
TakeAction();

17. Use template methods for repeated try-catch

%+ There is no use of having a similar catch block in 100’s places in your code.
% It increases code duplicity which does not help anything.
% Use template methods for such cases.

18. Document all exceptions in the application with javadoc

% Make it a practice to javadoc all exceptions which a piece of code may
throw at runtime.

% Also try to include possible course of action, user should follow in case
these exception occur.

25
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

Debugging Techniques in Java
+ process of determining and fixing bugs or errors present in the code, project,

or application is known as Debugging

\/

+ Debugging of code written in Java is a tough task.

\/

+ Debugging helps to improve the quality of the code.

\/

+ Debugging also helps to understand the flow of program code.

\/

+«+ It is a must-have skill for every Java programmer.

There are various Technique available for debugging of Java code but some of
them are IDE Specific. Following are the most common techniques for java code
debugging.

1. Use conditional breakpoint

+ It’s a breakpoint with a specified condition where the thread will stop
at the targeted line when the specified condition is true, unlike a line
breakpoint.

2. Use exception breakpoints

% For the debugging of NullPointerException, exception breakpoints is
solution.

3. Watchpoint

+» The watchpoint is a breakpoint set up on a field or variable.
“* Each time the targeted field or variable is accessed or changed, the
execution of the program will get stop and then you can debug.

4. Step filtering

% While performing Step Into during debugging process, sometimes it
happens that the control of the program goes from one class to other
class and eventually, you are moved to the external libraries or JDK
classes like System or String.

+ In case you do not want to move to the JDK classes or external
libraries, then step filtering is used.

26
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

«» Step filtering helps to filter out the JDK classes from Step Into.
%+ This feature will assist in skipping some particular packages during
the debugging process.

5. Evaluate (inspect and watch)

+ Evaluate enables to check the value of expressions while debugging
Java programs.

% All you need to do is right-click the statement and click on inspect. It
will show you the value of the selected expression during the
debugging process.

+ The value will appear in front of you over the watch window.

6. Drop to frame

% It allows you to re-run a part of your program.

7. Environment variables

8. Show logical structure

++ The logical structure option is very useful, especially when trying to
determine the contents of Java collection classes such
as HashMap or ArrayList.

% Instead of displaying the detailed information, the logical structure
will present only the necessary content such as the key and value of a
HashMap.

9. Modify the value of a variable

%+ There is no need to restart your debugging session with minor changes
in the code. You can continue to debug the program code. It will save
time.

10.Stop in Main

+» When a program is debugged with this feature enabled, the execution
will stop at the first line of the main function.

27
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

Stream, Zip File Stream, Object Stream and Handling File

All the programming languages provide support for standard I/O where the user's
program can take input from a keyboard and then produce an output on the
computer screen.

Java uses the concept of stream to make I/O operation fast with the packages
java.io
Stream

% A stream can be defined as a sequence of data and it is composed of bytes.

% A stream is a sequence of objects that supports various methods which can
be pipelined to produce the desired result.

* The java.io package contains nearly every class you might ever need to
perform input and output (I/O) in Java.

*

L)

% All streams represent an input source and output destination.

¢ The stream in the java.io package supports many data such as primitives,
object, localized characters, etc.

++ A stream does not store data and, in that sense, it is not a data structure.
% Stream also never modifies the underlying data source.

There are Three (3) types of standard Streams
1. InPutStream

v' This is used to feed the data to user's program and usually a keyboard
is used as standard input stream and represented as System.in. (i.e.
used to read data from a source)

2. OutPutStream

v" This is used to output the data produced by the user's program and
usually a computer screen is used for standard output stream and
represented as System.out. (i.e. used for writing data to a destination)

3. ErrorStream

v" This is used to output the error data produced by the user's program and
usually a computer screen is used for standard error stream and
represented as System.err.

28
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

Reading of File / File Input Writing on File / File Output
InputStream QutputStream
0101110 | Java 0101110 | N
Source — Application " — Destination
/ / Read Operation Write Operaton/ /
Text File N/W Socket C/
ext Flle 0CKe CMD B|I1:1i(|¢1ery Socket nsole

Figure: Stream in Java I/O

Methods of 1/O Stream

Output Stream classes

Void write(int) throws IOException

Void Write(byte[])throws IOException
Void flush()throws IOException

Void close()throws IOException

Input Stream Classes

int read() throws IOException

int availabe () throws IOException

void close() throws IOException

29
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

Reading and Writing Files

For reading and writing in file there are two most important stream are available:
FilelnputStream and FileQutputStream

FileInputStream

¢ FileInputStream is used to read data from the files.

% Objects can be created using the keyword new and there are several types of
constructors available.

+» Following constructor takes a file name as a string to create an input stream
object to read the file

InputStream f = new FilelnputStream("C:/PT Java/Hello");

%+ Following constructor takes a file object to create an input stream object to
read the file. First we create a file object using File() method as follows

File f =new File("C:/PT java/hello");

[nputStream f = new FilelnputStream(f);

% Once InputStream object in hand, then there is a list of helper methods which
can be used to read to stream or to do other operations on the stream.

FileOQutputStream

+* FileOutputStream is used to create a file and write data into it.

% The stream would create a file, if it doesn't already exist, before opening it
for output.

% There are two constructors which can be used to create a FileOutputStream
object.

Following constructor takes a file name as a string to create an input stream object
to write the file:

OutputStream f = new FileOutputStream("C:/PT_java/Hello")

Following constructor takes a file object to create an output stream object to write
the file. First, we create a file object using File() method as follows

File f = new File("C:/PT_java/Hello");

OutputStream f = new FileOutputStream(f);

30
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

% Once OutputStream object in hand, then there is a list of helper methods,
which can be used to write to stream or to do other operations on the stream.

Example To demonstrate /nputStream and OutputStream

Following example creates file “Myfile.txt” and writes given numbers in binary
format. Same would be the output on the standard output screen

java.io.*;
fileStreamExample {

void main(String args[]) {

try {
byte bWrite [] = {10,15,20,25,30};
OutputStream opstrm = new FileOutputStream("Myfile.txt");

for(int x = @; x < bWrite.length ; x++) {
opstrm.write(bWrite[x]);
}

opstrm.close();

InputStream ipstrm = new FileInputStream("Myfile.txt");
int size = is.available();

for(int 1 = @; i < size; i++) {
System.out.println((char)is.read() + " ");
}
ipstrm.close();
} catch (IOException e) {
System.out.print("There is Exception...Alert !");

Writing and Reading objects in Java

% By using the serialization process objects can be read and write in java file.

% Serialization is a process to convert objects into a writable byte stream.

% Once converted into a byte-stream, these objects can be written to a file. The
reverse process of this is called de-serialization.

31
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

A Java object is serializable if its class or any of its superclasses implement either
the java.io.Serializable interface or its subinterface, java.io. Externalizable.

The objects can be converted into byte-stream using java.io. ObjectOutputStream.
In order to enable writing of objects into a file using ObjectOutputStream.

On reading objects, the ObjectInputStream directly tries to map all the attributes
into the class into which we try to cast the read object. If it is unable to map the
respective object exactly then it throws a ClassNotFound exception.

Reading objects in Java are similar to writing object using ObjectOutputStream
and ObjectInputStream.

Consider the example of writing objects and reading objects in Java.

Java Obiject.

java.io.Serializable;
Student Serializable {
String name;

int age;
String gender;

Student(String name, int age, String gender) {
.name = name;

.age = age;

.gender = gender;

String toString() {
return "Name of the Student:" + name + "\nAge: " + age + "\nGender: " + gender;

32
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

Let’s serialize the class student then.

java.io.File;
java.io.FilelnputStream;
java.io.FileNotFoundException;
java.io.FileOutputStream;
java.i0.10Exception;
java.10.0bjectInputStream;
java.io.ObjectOutputStream;

WriteAndReadObjectEg {
void main(String[] args) {

student std1 = new student("Sita", 20, "Female");
student std2 = new student("Ram", 22, "Male");
try {
FileOutputStream fopstrm = new FileOutputStream(new File("myObjects.txt"));
ObjectOutputStream objopstrm = new ObjectOutputStream(fopstrm);

objopstrm.writeObject(std1);
objopstrm.writeObject(std2);

objopstrm.close();
fopstrm.close();

FileInputStream fipstrm = new FileInputStream(new File("myObjects.txt™));
ObjectInputStream oipstrm = new ObjectInputStream(fipstrm);

student s1 = (student) oipstrm.readObject();
student s2 = (student) oipstrm.readObject();

System.out.println(s1.toString());
System.out.println(s2.toString());

oipstrm.close();
fipstrm.close();

} catch (fileNotFoundException e) {
System.out.println("File not found");

BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

} catch (IOException e) {
System.out.println("Error initializing stream");

} catch (ClassNotFoundException e) {

system.out.println("class not found exception occurs");
e.printStack Trace();

Name of the Student:Sita
Age: 20

Gender: Female

Name of the Student:Ram
Age: 22

Gender: Male

User-defined / Custom Exception in Java

% Java provides the facility to create your own exception class and throws that
exception using ‘throw’ keyword is called User defined Custom Exception in
java.

% This can be implemented by extending the class Exception.

Simply we can say that,

Custom exceptions in Java are those exceptions which are created by a
programmer to meet their specific requirements of the application.

For example:

A banking application, a customer whose age is lower than 18 years, the program
throws a custom exception indicating “needs to open joint account”.

suppose a Voting Application in Nepal, If a person’s age entered is less than 18
years, the program throws “Not eligible for Voting” as a custom exception in
context of Nepal.

See the Following Example:

34
BE-Computer Il /Il Pokhara University, EEC

Programming Technology BY: Mukunda Paudel
paudelmuku@gmail.com

UserDefinedExpEg

void main(String args[])

throw new ItsMyException(20);

1
I}

catch(ItsMyException ¢)

f
1

System.out.println(e) ;

ItsMyException Exception

int x;

[tsMyException(int y)

f
1

String toString()

return ("Exception Number = "+x) ;

Exception Number = 28
PS C:\Users\paude> ||

BE-Computer Il /Il Pokhara University, EEC

