
Computer Architecture Note According to PU Syllabus By
Karn

computer organization and architecture (Pokhara University)

Scan to open on Studocu

Studocu is not sponsored or endorsed by any college or university

Computer Architecture Note According to PU Syllabus By
Karn

computer organization and architecture (Pokhara University)

Scan to open on Studocu

Studocu is not sponsored or endorsed by any college or university
Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn
https://www.studocu.com/row/document/pokhara-university/computer-organization-and-architecture/computer-architecture-note-according-to-pu-syllabus-by-karn/118734985?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn
https://www.studocu.com/row/course/pokhara-university/computer-organization-and-architecture/6800107?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn
https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn
https://www.studocu.com/row/document/pokhara-university/computer-organization-and-architecture/computer-architecture-note-according-to-pu-syllabus-by-karn/118734985?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn
https://www.studocu.com/row/course/pokhara-university/computer-organization-and-architecture/6800107?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

Computer Architecture
A note according to Pokhara University’s course syllabus

Compiled By: Deepak Kumar Karn

©2013 http://deepakkarn.wordpress.com/ All rights reserved

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

About this note:

This note covers almost all topics of Computer Architecture’s Course

Syllabus according to Pokhara University, Nepal.

This note may not give you the detail Knowledge of Computer

Architecture but will help you in Exams.

I’m not writer of this note book. I just compiled it from different

resources.

References:

Teachers:

[1]Assistant Professor Nitu Bharti, Nepal Engineering College, Nepal

[2]Assistant Professor Dayaram Budhathoki, Nepal Engineering College,

Nepal

Books:

[1]Computer System Architecture (3rd Ed) by M Morris Mano
[2] Computer Organization and Architecture by William Stallings

And: Google search (www.google.com)

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

Contents Pages

Chapter 1: Introduction ____________________________1

Chapter 2: Central Processing Unit____________________9

Chapter 3: Control Unit Design _______________________46

Chapter4: Input/ Output Organization__________________63

Chapter5: Memory Organization_______________________82

Chapter6: RISC, CISC and Pipelining Techniques___________94

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

1 | P a g e
Compiled By:- Deepak Kumar Karn

Chapter 1 :- Introduction

1.) Expanded Structure of IAS computer:-

 Figure :- Expanded structure of IAS computer

Memory buffer register (MBR):-

Contains a word to be stored in memory or sent to the I/O unit, or is used

to receive a word from memory or from the I/O unit.

Memory address register (MAR) :-

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

2 | P a g e
Compiled By:- Deepak Kumar Karn

 Specifies the address of memory in the word to be written from or read

into the MBR.

Instruction register (IR) :-

Contains the 8 bits Opcode instruction being executed.

Instruction buffer register (IBR):-

Employed to hold temporarily the right- hand instruction from a word

in memory.

Program counter (PC):-

Contains the address of the next instruction-pair to be fetched from

memory.

Accumulator (AC) and multiplier quotient (MQ):-

Employed to hold temporarily operands and results of ALU operations.

For example, the result of multiplying two 40-bit numbers is an 80-bit

number; the most significant 40 bits are stored in the AC and the least

significant in the MQ.

Central processing unit (CPU):-

Controls the operation of the computer and performs its data processing

functions; often simply referred to as processor.

I/O:-

Moves data between the computer and its external environment.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

3 | P a g e
Compiled By:- Deepak Kumar Karn

2.) Flow chart of IAS Computer:-

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

4 | P a g e
Compiled By:- Deepak Kumar Karn

The IAs operates by respectively performing as instruction cycle. Each

instruction cycle consists of two sub-cycles.

Fetch Cycle:-

 The opcode of next instruction is loaded into the IR and the address

portion is loaded into the MAR. This instruction may be taken from the IBR,

or it can be obtained from memory by loading a word into the MBR, and

then down to the IBR, IR and MAR.

Execute Cycle:-

The control circuitry interprets the Opcode & executes the instruction by

sending out the appropriate control signals to cause data to be moved or

an operation to be performed by the ALU.

3.)IAS instruction format:-

The memory of IAS consists of 1000 storage locations called words of 40

binary digits each. Both data & instructin are stored there, Number are

represented in binary form.

 Fig. IAS Format

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

5 | P a g e
Compiled By:- Deepak Kumar Karn

Each number is represented by a sign bit and a 39 bit value. A word may

also contain 20 bit instruction consisting of an 8 bit operation code(opcode)

specifying the operation to be performed and 12 bit address designing one

of the words in memory (numbered from 0 to 999)

IAS computer had a total of 21 instruction that can be grouped as follows.

1. Data transfer:-

 Move data between memory and ALU register or between two ALU

registers.

2. Unconditional branch:-

 The control unit executes instruction in sequence from memory.

There sequence can be changed by a branch instruction which facilitates

repetitive operations.

3. Conditional branch:-

 Branch can be made dependent on a condition thus allowing decision

part.

4. Arithmetic:-

 It comprises operation performed by ALU

5. Address modify:-

 It permits address to be computed in ALU and then inserted into

instruction stored in memory.

4.) The difference between computer Organization and Computer

Architecture:-

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

6 | P a g e
Compiled By:- Deepak Kumar Karn

Computer organization

� Deals with all physical components of computer systems that

interacts with each other to perform various functionalities

� The lower level of computer organization is known as micro-

architecture which is more detailed and concrete.

� Examples of Organizational attributes includes Hardware details

transparent to the programmer such as control signal and peripheral.

Computer architecture

� Refers as a set of attributes of a system as seen by programmer

� Examples of the Architectural attributes include the instruction set,

the no of bits used to represent the data types, Input Output

mechanism and technique for addressing memories.

The difference between architecture and organization is best described by

a non-computer example. Is the gear level in a motorcycle part of it is

architecture or organization? The architecture of a motorcycle is simple; it

transports you from A to B. The gear level belongs to the motorcycle's

organization because it implements the function of a motorcycle but is not

part of that function

5.)Scale Of Integration:-

The number of components fitted into a standard size IC represents its

integration scale, in other words it’s a density of components. It is classified

as follows:

� SSI – Small Scale Integration

It have less than 100 components (about 10 gates).

����MSI – Medium Scale Integration

It contains less than 500 components or have more than 10 but less than

100 gates.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

7 | P a g e
Compiled By:- Deepak Kumar Karn

���� LSI – Large Scale Integration

Here number of components is between 500 and 300000 or have more

than 100 gates.

���� VLSI – Very Large Scale Integration

It contains more than 300000 components per chip

����VVLSI - Very Very Large Scale Integration

It contains more than 1500000 components per chip.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

8 | P a g e
Compiled By:- Deepak Kumar Karn

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

9 | P a g e
Compiled By:- Deepak Kumar Karn

 Chapter2:- Central Processing Unit

1.) ALU:-

 The ALU is the part of computer that actually performs arithmetic & logical

operations. All of other elements in the computer system, control unit,

register, memory, I/O are there mainly to bring data into ALU for it to

process and then to take results back.

2.)Sign-magnitude representation:-

�The most significant(left side) bit in the word as a sign bit.

 Sign bit 0� +Ve number

 1� -ve number

 Eg.

 +18 � 00010010

 -18 � 10010010

Drawbacks:

 Addition and subtraction require a consideration of both the sign of

the numbers and their magnitude to carry out the required operation.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

10 | P a g e
Compiled By:- Deepak Kumar Karn

 +0 = 0000 0000

 -0= 1000 0000

This is inconvenient because it is slightly more difficult to test for 0, (which

appears frequently on computers)

3.) Two’s complement representation:-

 Like sign magnitude, two’s complement representation uses the

most significant bit as a sign bit, making it easy to test whether it is +ve or –

ve.

 -7 = 1 1 1 1

 Sign Magnitude

 And its 2’s complement is

 =1001

 5= 0 1 0 1

 And its 2’s complement is

 =0101

 Addition:-

 -7 = 1 0 0 1 -4 = 1 1 0 0

 + 5 = 0 1 0 1 + 4 = 0 1 0 0

 -2 = 1 1 1 0 -0= 1 0 0 0 0

�The result may be larger that can be held in the word size being used.

This condition is overflow.

1

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

11 | P a g e
Compiled By:- Deepak Kumar Karn

�Overflow rule:- If two number are added, and they are both positive or

negative than overflow occurs if and only if the result has opposite sign.

 5 = 0 1 0 1

 4 = 0 1 0 0

 1 0 0 1

` -7 = 1 0 0 1 Over flow

 -6 = 1 0 1 0

 1 0 0 1 1

Subtraction:-

 To subtract one number (subtrahend) from another number

(minuend), take the 2’s complement (negative) of the subtrahend and add

it to the minuend.

M=2 s= 7

-7 = 2’s complement of 0111

 = 1000

 + 1

 1001

Therefore, 2-7 = 2+ (-7)

 0010

 1001

 1011

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

12 | P a g e
Compiled By:- Deepak Kumar Karn

Block Diagram of H/W Addition Subtraction:

Q. Explain the algorithm for signed magnitude number

addition/subtraction with suitable examples.

Ans.:-

 M(mode control)

 AVf

 o/p Carry

 Load Sum

 Fig: Hardware for signed magnitude addition & subtraction.

 BS

 E

 AS

 B-Register

 Complement

 Parallel Adder

 A-register

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

13 | P a g e
Compiled By:- Deepak Kumar Karn

�Above block diagram for addition and subtraction consist of register A&B

and sign flip-flop AS & BS subtraction is done by adding A to the 2’s

complement of B.

�The o/p carry is transfer flip-flop E where it can be checked to determine

the relative magnitude of two magnitude.

�The add overflow flip-flop(AOF) holds the overflow when A & B are

added.

�The A register provides other micro operation that may be needed when

we specify sequence of steps.

�The addition of A+B is done through the parallel adder.

�The complement provides the o/p of B or the complement of B

depending on the state of mode control M. The M signal also applied to the

i/p carry of the adder when M=0, the value of B is transfer to the adder, the

i/p carry is zero & the o/p of the adder is equal to sum A+B.

�When M=1, the one’s complement of B is applied to the adder, the i/p

carry is I & O/P = A+B+I which is equal to A+2’s complement of B. Again

which is equivalent to the subtraction A-B.

Multiplication:

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

14 | P a g e
Compiled By:- Deepak Kumar Karn

 Example1:- Multiplication Of Unsigned Binary Integers

 (1011)� ∗ (1101)�=	(10001111)�

 (11*13) = (143)

Block Diagram of multiplication:-

 (b) Above Example 1

 Fig. Hardware Implementation of Unsigned Binary Multiplication

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

15 | P a g e
Compiled By:- Deepak Kumar Karn

Another Example of Multiplication:-

1010*1100

 C A Q M

 0 0000 1010 1100

Since,Q0=0 0 0000 0101 1100 �1
st

 Cycle

Since,Q0=1 C,A A+M

 0 1100 0101 1100—add

 0 0110 0010 1100—shift 2
nd

Cycle

Since,Q0=0

 0 0011 0001 1100—shift 3
rd

Cycle

Since,Q0=1 C,AA+M

 0 1111 0001 1100—add 4
th

Cycle

 0 0111 1000 1100—shift

 Answer = 0111 1000

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

16 | P a g e
Compiled By:- Deepak Kumar Karn

Flowchart of Multiplication:-

 Fig. Flow chart of unsigned binary multiplication

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

17 | P a g e
Compiled By:- Deepak Kumar Karn

#. Two’s complement Multiplication Booth’s Algorithm:-

 Fig. Booth’s Algorithm for twos Complement Multiplication

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

18 | P a g e
Compiled By:- Deepak Kumar Karn

Example:

 Booth’s Algorithm (7*3)

�Since, Q�	
 =11

�Since, Q�	
 =01

�Since, Q�	
=00

AQ= 0001 0101

 Answer

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

19 | P a g e
Compiled By:- Deepak Kumar Karn

Another Example:

 -7*3

 A Q �	
 M

 000 0011 0 1001

 Q�	
=10 A A-M

 0111 0011 0 1001 AA-M

 0011 1001 1 1001 Shift

 Q�	
 = 11

 0001 1100 1 1001 Shift

 Q�	
=01 AA+M

 1010 1100 1 1001

 1101 0110 0 1001

 Q�	
=00

 1110 1011 0 1001

Note:

 In either of the case, the right shift is such that the leftmost bit of A

namely �	
, not only is shifted into �	� but also remains in �	
. This is

required to preserve the sign of the number in A&Q. It is known as

arithmetic shift it preserves sign bit.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

20 | P a g e
Compiled By:- Deepak Kumar Karn

Division: Division of unsigned binary division.

 Flowchart of unsigned Binary division.

 Fig. FLOWCHART UNSIGNED BINARY DIVISION

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

21 | P a g e
Compiled By:- Deepak Kumar Karn

Two’s complement division Algorithm:

1. MDivisor

 A, QDividend (expressed as 2n bits)

 For eg.

 0111 becomes 0000 0111

 1001 becomes 1111 1001

2. Shift A, Q left 1 Bit position.

3. If M & A has same sign perform

 AA-M,

 Otherwise, AA+M

4. The step 3 is successful if the sign of A is same before and after the

operation.

 a. If Successful or A=0, then set Q=1

 b. If unsuccessful and A≠0, set Q0 & restore previous value of A.

5. Repeat step 2 through 4 for ‘n’ times.

6. The reminder is in A. If the sign of divisor & dividend are same quotient is

in Q. Otherwise quotient is 2’s complement of Q.

 D=Q*V+R

 Where, D=Dividend V= Divisor

 Q= Quotient R=Reminder.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

22 | P a g e
Compiled By:- Deepak Kumar Karn

Examples of twos complement Division

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

23 | P a g e
Compiled By:- Deepak Kumar Karn

4.)Floating Points:

 Floating point numbers: Two Uses:

 1. Real no. with non zero fractions

 3.1416 , 6.62*10	��

 2. Really high number

 3*10� , 6.02*10�� Exponent

 Mantissa Radix

 Floating point representation.

 �+/- .significand x 2
exponent

 �Misnomer

 �Point is actually fixed between sign bit and body of mantissa

 �Exponent indicates place value (point position)

 examples

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

24 | P a g e
Compiled By:- Deepak Kumar Karn

#Addition and subtraction:

 Four phases of the algorithm for addition and subtraction.

 1. Check for zeros.

 �Addition ~ subtraction except sign change.

 �If either operand is 0, the other is reported as result.

 2. Significand Alignment

 �Manipulate numbers so that two exponent are equel.

 Eg:- �123 ∗ 10�) + (456 ∗ 10	�)

 = (123 ∗ 10�) + (4.56 ∗ 10�)

 =127.56 ∗ 10�

 �Alignment may be achieved by shifting either smaller

number to right (increasing its exponent) or shifting the

larger number to left.

 3. Addition

 �Significands added taking account their sign bit also.

 �Possibility of significand overflow by 1 digit. If so, The

Significand of result is shifted right and exponent is

incremented

 4. Normalization.

 � Significand digits are shifted left until MSD is non-zero.

 �Each shift causes a decrement of the exponent and thus

 could cause exponent underflow.

 �Finally the result must be rounded off and then reported.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

25 | P a g e
Compiled By:- Deepak Kumar Karn

 IEEE 754 standard format for floating point.

Example : Represent �47.625�
� in Single Precision Floating Point (SPFP)

format?

 Step:1

 47=101111

 0.625*2=1.250 �1

 0.25*2=0.5 �0

 0.5*2=1 �1

 �47.625�
�= 101111.101

 Step:2

 1.01111101*2^5 (Normalization form)

 =1.01111101*2^5

 Step:3

 Real Exp= Biased

 =132

5+127

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

26 | P a g e
Compiled By:- Deepak Kumar Karn

 Binary of 132

128 64 32 16 8 4 2 1

1 0 0 0 0 1 0 0

 132=1000100

 Sign=+ve

0 10000100 01111101000000000000000

 8 bit 23 bit

5.) Flowchart of floating point addition/subtraction

The floating point addition/subtraction are more complex than

multiplication and division.

This is because of the need for alignment. There are four basic phases of

the algorithm for addition and subtraction. These phases are clearly shown

in below figure (flowchart). Namely

 1. Check for zeros

 2. Align for significands

 3. Add or subtract the Significands

 4. Normalization the result

The first phase is zero check. Because addition and subtraction are identical

except for a sign change, the process begins by the subtratend if it is a

subtract operation. Next, if either operand is 0, the other reported as the

result.

The second phase is significand alignment. The numbers are manipulated

so that the two exponents are equal. Alignment can be achieved by shifting

either the smaller number to the right (increasing its exponent) or shifting

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

27 | P a g e
Compiled By:- Deepak Kumar Karn

the layer number to the last. Because either operation may result in the

loss of digits, it is the smaller that is shifted, any digits that are lost are

therefore or relatively small significance. The alignment is achieved by

repeatedly shifting the magnitude portion of the significand right 1 digit &

incrementing the exponent until the two exponents are equal. If this

process results in a 0 value for the significand then the other number is

reported as the result. If two numbers have exponents that differ

significantly, the lesser number is lost.

 Figure :- Floating point addition subtraction(ZX±Y)

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

28 | P a g e
Compiled By:- Deepak Kumar Karn

The third phase is addition in which the two significands are added together

taking into account their signs. Because the sign may differ, the result may

be a 0. There is also the possibility of significand of overflow by 1 digit. If so,

the significand of the result is shifted right and the exponent is

incremented. An exponent overflow could occur as a result; this would be

reported & the operation halted.

The last and final phase, I.e. fourth phase is normalization. The result is

normalized in this phase. Normalization consists shifting significand digits

left until the most significant digit(bit, or 4 bit for base-16 exponent) is

non-zero. Each shifts causes a decrement of the exponent & thus could

cause an exponent underflow. Finally, the result must be rounded off &

then reported.

6.) Floating Point Multiplication/Division:-

• Check for zero

• Add/subtract exponents

• Multiply/divide significands (watch sign)

• Normalize

• Round

• All intermediate results should be in double length storage

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

29 | P a g e
Compiled By:- Deepak Kumar Karn

Floating point multiplication (ZX*Y)

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

30 | P a g e
Compiled By:- Deepak Kumar Karn

 Floating point Division:- (ZX/Y)

7.)Instruction Sets:

What is an Instruction Set?

• The complete collection of instructions that are understood by a CPU

• Machine Code

• Binary

• Usually represented by assembly codes.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

31 | P a g e
Compiled By:- Deepak Kumar Karn

Elements of an Instruction

• Operation code (Op code)

— Do this

• Source Operand reference

— To this

• Result Operand reference

— Put the answer here

• Next Instruction Reference

— When you have done that, do this...

The operation of CPU is determined by instruction it executes referred to

machine instruction or computer instruction.

 The collection of different instruction that CPU can execute is

referred to a CPU’s intrusion set.

Basic instruction cycle:-

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

32 | P a g e
Compiled By:- Deepak Kumar Karn

Fetch Cycle

• Program Counter (PC) holds address of next instruction to fetch

• Processor fetches instruction from memory location pointed to by PC

• Increment PC

— Unless told otherwise

• Instruction loaded into Instruction Register (IR)

• Processor interprets instruction and performs required actions

Execute Cycle

• Processor-memory

— data transfer between CPU and main memory

• Processor I/O

— Data transfer between CPU and I/O module

• Data processing

— Some arithmetic or logical operation on data

• Control

— Alteration of sequence of operations

— e.g. jump

• Combination of above

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

33 | P a g e
Compiled By:- Deepak Kumar Karn

Instruction cycle state diagram:-

 Figure :- Instruction cycle state diagram.

� Instruction cycle calculation determines the address of next

instruction to be executed. Usually this involves adding a fix no. to

address of previous instruction.

� Instruction fetch: Read instruction from its memory location into the

processor.

� Instruction operation decoding: Analyze instruction to determine

type of operation to be performed & operand to be executed.

� Operand address calculation: If operation involves reference to an

operand in memory i/o the determine address of operand.

� Operand store: write result in memory in or out to i/p

� Data operation: Perform operation indicated instruction

� Operand store: Write result into memory or out to i/p.

#Simple Instruction Format:-

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

34 | P a g e
Compiled By:- Deepak Kumar Karn

Instruction Types

• Data processing

• Data storage (main memory)

• Data movement (I/O)

• Program flow control

Number of Addresses (a)

• 3 addresses

— Operand 1, Operand 2, Result

— a = b + c;

— May be a forth - next instruction (usually implicit)

— Not common

— Needs very long words to hold everything

Number of Addresses (b)

• 2 addresses

— One address doubles as operand and result

— a = a + b

— Reduces length of instruction

— Requires some extra work

– Temporary storage to hold some results

Number of Addresses (c)

• 1 address

— Implicit second address

— Usually a register (accumulator)

— Common on early machines

Number of Addresses (d)

• 0 (zero) addresses

— All addresses implicit

— Uses a stack

— e.g. push a

— push b

— add

— pop c

— c = a + b

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

35 | P a g e
Compiled By:- Deepak Kumar Karn

8.)Addressing Modes and Formats

1. Immediate Addressing

 Intruction

Opcode Operand

• Operand is part of instruction

• Operand = address field

• e.g. ADD 5

— Add 5 to contents of accumulator

— 5 is operand

• No memory reference to fetch data

• Fast

• Limited range

2. Direct Addressing

 Instruction

Opcode Address

Operand

• Address field contains address of operand

• Effective address (EA) = address field (A)

• e.g. ADD A

— Add contents of cell A to accumulator

— Look in memory at address A for operand

• Single memory reference to access data

• No additional calculations to work out effective address

• Limited address space

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

36 | P a g e
Compiled By:- Deepak Kumar Karn

3. Indirect addressing:

Opcode Address

pointer to

operand

Operand

• EA = (A)

— Look in A, find address (A) and look there for operand

• e.g. ADD (A)

— Add contents of cell pointed to by contents of A to

accumulator

• Multiple memory accesses to find operand

• Hence slower

4. Register addressing mode

Opcode Register Address R

 Registers

Operand

• Operand is held in register named in address filed

• EA = R

• Limited number of registers

• Very small address field needed

— Shorter instructions

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

37 | P a g e
Compiled By:- Deepak Kumar Karn

— Faster instruction fetch

• No memory access

• Very fast execution

• Very limited address space

5. Register indirect addressing

• EA = (R)

• Operand is in memory cell pointed to by contents of register R

• Large address space (2
n
)

• One fewer memory access than indirect addressing

6. Displacement addressing

• EA = A + (R)

• Address field hold two values

— A = base value

— R = register that holds displacement

— or vice versa

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

38 | P a g e
Compiled By:- Deepak Kumar Karn

7. Relative addressing

• A version of displacement addressing

• R = Program counter, PC

• EA = A + (PC)

8. Base- register addressing

• A holds displacement

• R holds pointer to base address

• R may be explicit or implicit

9. Stack addressing

• A = base

• R = displacement

• EA = A + R

• Good for accessing arrays

— EA = A + R

— R++

6). Pentium and Power PC Evolution

Pentium incorporates the sophisticated design and serves as an

excellent example of CISC design.

• 8080 � First general purpose microprocessor.

• � 8 bits

• 8086 � 16 bits

• �Wider data path and larger registers.

• �Also has instruction cache.

• 80286�Extension of 8086

• �can address 16 MB of memory

• 80386� 32 bits

• �supports multitasking

• 80486�Uses Cache & Instruction pipelining

• �comes in with built math co-processor

•

Pentium:

• Super scalar technique to execute multiple instruction in

parallel.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

39 | P a g e
Compiled By:- Deepak Kumar Karn

• Pentium Pro: features like register renaming branch prediction, data

flow analysis, speculative execution.

• Pentium –II : incorporates MMX technology designed to process

audio-video and graphics data.

• Pentium-III:- incorporates additional floating point instruction to

support 3D graphics

• Merceed: it is 64 n-bit organization.

•

Power PC:

• It is direct dependant of RISC system. IBM 8018 is the best design &

most powerful RISC based design system.

• 601:�it is 32 bita

• �it brought power PC evolution to market place

• 603 :�intended for low desktop & portable computer

• �32 bits

• 604:�32 bit machine

• �Intended for desktop & low servers.

• �used for superscalar design

• 620:�intended for high end server.

• �64 bit machine.

• 740/750(G3)-integrates two level of cache n main processor.

• G4:�Increased parallelism & interval speed.

Some questions:

1. What is processor organization? Describe the register organization of

CPU??

ANS:

� The organization of a processor is called processor organization.

�ALU:- Perform arithmetic and logical operation of data.

�Control Unit:- The CU controls the data into and out of CPU and Controls

Operation of ALU.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

40 | P a g e
Compiled By:- Deepak Kumar Karn

�Registers:- These are the minimal internal memory consisting a set of

storage locations used to store operand and result.

�Internal CPU bus: It helps transfer of data b/w various register and ALU

 Fig:- Internal memory of CPU

To understand the organization of the processor, let us consider the

requirement placed on the processor, the things that it must do.

�Fetch instruction: processor reads an instruction from memory (cache,

main)

�Interpret instruction: the instruction is decoded to determine what

action is enquired.

�Fetch data: the execution of an instruction may require reading data

from memory or I/O module.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

41 | P a g e
Compiled By:- Deepak Kumar Karn

�Process data: the execution of an instruction require performing some

arithmetic or logic operation on data.

�write data: the result of an execution may require writing data to

memory or an I/O module.

Register Organization

The register in processor performs two roles:

1. User visible register:

 A user visible register is the one that may be referenced by

means of the machine language that the CPU executes ,it can be

categorized as:

�General Purpose: Register that hold the operand and in some case use

for addressing purpose.

�Data register: These registers may be used only to hold data and cannot

be used in the calculation of operand address.

�Address register: They are devoted to a particular addressing mode. For

eg: Segment pointer, stack pointer & index register.

�Condition codes (flags): These are the bits set by the CPU as a result of

an operation. For eg: An arithmetic operation may produce a positive,

negative, zero or overflow results.

2.Status & control register:

 Control registers are used to control the operation of CPU.

Most of these aren’t visible to the user. For eg: Pc, instruction registers,

memory address register, memory buffer register. All CPU contains a

register called program status word(PSW)that contains condition codes

plus other status information. For eg: sign, zero, carry, overflow interrupt

etc

2. What is difference between zero address, one address and two address

instruction?

 ANS

�Zero address instruction:

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

42 | P a g e
Compiled By:- Deepak Kumar Karn

 They are applicable to a special memory organization

called a stack. The stack is a last in first out set of location. Zero address

instruction reference the top to stack elements.

 For eg : A+B+C

 Push A

 Push B

 ADD

 Push C

 ADD

�One-address instruction:

 In one address instruction, the second order must be

implicit the accumulation contains one of the operands and is used to

store the result.

For eg: Load B

 ADD A

�Two –address instruction:

 With 2 –address instruction, one address must do

double duty as both as operand and a result. To avoid altering the value of

an operand, a ‘MOV’ instruction is used to move one of the value to a

result or temporary location before performing the operation.

For eg: SUB A,B

� A=A-B

3. Discuss the factors that influence the design of an instruction format.

ANS:

�One of the most interesting and most analyzed aspects of the computer

design is instruction set design. The design of an instruction set is very

complicated.

 The most common factors are:

 �Operation repertoire: how many and which operation to provide

and how complex operation should be.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

43 | P a g e
Compiled By:- Deepak Kumar Karn

 �Data types: The various types of data on which operation is to be

performed.

 �Instruction format: Instruction length (in bits), no of address, size

of various field and others.

 �Resistors: No. of CPU register that can be referenced by

instructions and their use.

 �Addressing: The mode or modes by which the address of an

operand is specified.

4 .Explain role of stack in programming.

ANS:

�Computers with stack organization have PUSH & POP instruction which

requires an address field.

For e.g.

 PUSh X;

 POPM[X]

 Pop of stack

�This instruction PUSH pushes the word or data at address X to the top of

stack.

�The stack pointer (SP) is automatically updated.

�The operation instruction doesn’t contain any address field because the

operation is performed on to top most operand s of the stack.

5. Define Stack. Explain how arithmetic operation (A-B)/(C+A*D +B/C) is

calculated by implementing.

ANS:

�

Three address Comment

SUB Y, A, B; YM[A]-M[B]

MPY T, D, E; TM[D]-M[E]

ADD T, T, C; TT+M[C]

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

44 | P a g e
Compiled By:- Deepak Kumar Karn

DIV Y, Y, T; YY/T

Two address Comment

MOVE Y, A YA

SUB Y, B YY-B

MOV T, D TD

MPY T, E TT*E

ADD T, C TT+C

DIV Y, T YY/T

One address Comment

LOAD D ACD

MPY E ACAC*E

ADD C ACAC+C

STOR Y YAC

LOAD A ACA

SUB B ACAC-B

DIV Y ACAC/Y

STOR Y YAC

Zero address Comment

PUSH D TOSD

PUSH E TOSE

MPY TOSD*E

PUSH C TOSC

ADD TOSD*E+C

POP Y YTOS

PUSH A TOS A

PUSH B TOS TOSB

SUB TOS A-B

DIV TOS(A-B)/Y

POP Y YTOS

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

45 | P a g e
Compiled By:- Deepak Kumar Karn

6. Multiply (-9)*(-13) using Booth’s Algorithm

ANS:

A Q(-9) Q M(-13)

00000000 11111001 0 11110011 (initial)

00001101 11110111 0 11110011 AA-M

00000110 11111011 1 11110011 shift(1)

00000011 01111101 1 11110011 shift(2)

00000001 10111110 1 11110011 shift(3)

11110100 10111110 1 11110011 AA+M

11111010 01011111 0 11110011 shift A

00000111 01011111 0 11110011 AA-M

00000011 10101111 1 11110011 shift(5)

00000001 11010111 1 11110011 shift(6)

00000000 11101011 1 11110011 shift(7)

00000000 01110101 1 11110011 shift(8)

Product in A-Q �00000000 01110101

 �01110101

 =117

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

Compiled By:- Deepak Kumar Karn

1.)Micro-Operations

 The execution

sub-steps generally c

indirect execute & in

sequence of more fu

transfer between reg

a single ALU operatio

Fetch cycle:-

 The beginn

instruction to be fetc

MAR (Memory Addr

MBR (Memory Buffe

arn

Chapter3 :- Control Unit Design

ions:-

tion of instruction involves the execution

ally called cycles. For e.g. an execution ma

 & interrupt cycle. Each cycle is in turn ma

re fundamental operation called micro ope

 A single micro-operation general

n register, a transfer between register & a

ration.

eginning of the each instruction cycle and

 fetched from memory which consist.

ddress Register)

uffer Register)

46 | P a g e

ion of a sequence of

 may consist of fetch,

 made up of a

 operation.

erally involves a

 & an external bus or

and causes an

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

47 | P a g e
Compiled By:- Deepak Kumar Karn

PC (Program Counter)

IR (Instruction Register)

Micro-operations in fetch cycle:

t1: MAR � (PC)

t2: MBR � memory

 PC �(PC) +1

t3: IR � MBR

�The address of next instruction to be executed is in PC.

�First step is to move that address to MAR. The desired address (in the

MAR) is placed on the address bus. The control unit issue READ command

on the control bus & the result appear on the data bus & is copied into the

MBR.

�We also need to increment PC by 1.

�The third step is to move the contents of MBR to IR.

Indirect cycle:-

 When instruction is fetched the next is to fetch source code. The

instruction specifies an indirect address, then an indirect cycle must

precede the execute cycle as follows:

Micro operation of indirect cycle:

t1: MAR�(IR address)

t2: MBR� memory

t3: IR (address) �(MBR (address))

 Interrupt cycle:-

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

48 | P a g e
Compiled By:- Deepak Kumar Karn

 At the completion of execute cycle, the test is made to determine

whether any enabled interrupts have occurs. The nature of the cycle gently

varies from one machine cycle to another.

Micro operation of interrupt cycle:

t1: MBR�(PC)

t2:MAR�Save address

 PC: Routine Address

t3:Memory�MBR

Execute cycle:

 The fetch, indirect and interrupt cycles are simple and predictable.

Each involves a small, fixed sequence of micro- operations and in each case,

the same micro operations are repeated each time around for ADD R1, X.

t1: MAR �(IR address)

t2: MBR�memory

t3:R1�(R1) + (MBR)

 Instruction cycle:

• Each phase decomposed into sequence of elementary micro-

operations

• E.g. fetch, indirect, and interrupt cycles

• Execute cycle

— One sequence of micro-operations for each opcode

• Need to tie sequences together

• Assume new 2-bit register

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

49 | P a g e
Compiled By:- Deepak Kumar Karn

— Instruction cycle code (ICC) designates which part of cycle

processor is in

– 00: Fetch

– 01: Indirect

– 10: Execute

– 11: Interrupt.

Note: In exam Question may ask like : Describe the different methods to

generate address of next micro-instructions in microcode memory(Control

memory).

Ans : write above all cycles in your answer sheet.

2.) Flow chart for Instruction cycle:

 We assume 2 bit register called instruction cycle code (ICC). It

designates the state of processor in terms of which portion of cycle it is in

00: Fetch 10: Execute

01: Indirect 11: Interrupt

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

50 | P a g e
Compiled By:- Deepak Kumar Karn

3.) Control Unit:-

 It performs two tasks

a.) Sequencing:

 The control unit causes the processor to step through a series of

micro-operation in the proper sequence, based on the program being

executed.

b.) Execution:-

 The control unit causes each Micro-operation to be performed.

 Fig. Block diagram of a control unit.

These two tasks (Sequencing & Execution) are done by Control Signals:

• Clock

— One micro-instruction (or set of parallel micro-instructions) per

clock cycle

• Instruction register

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

51 | P a g e
Compiled By:- Deepak Kumar Karn

— Op-code for current instruction

— Determines which micro-instructions are performed

• Flags

— State of CPU

— Results of previous operations

• Control signal from control bus

— Interrupts

— Acknowledgements

i.e. in control unit’s inputs are Clock, Instruction register, Flags and Control

Signal from control bus.

Now the outputs of Control units are:

• Within CPU

— Cause data movement

— Activate specific functions

• Via control bus

— To memory

— To I/O modules

Note : Question may ask like: explain various i/p and o/p for CU.

ANS: Draw figure of CU and then write in Inputs section:-(Clock, Instruction

Register, Flags, Control signal from control bus.

Outputs sections:- (within CPU, Vai Control bus)

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

52 | P a g e
Compiled By:- Deepak Kumar Karn

4.) Control signal example: (shown in next page)

Fetch M-Op Active Control Signals

 t1:MAR �(PC) C2

 t2:MBR�Memory C5,CR

 PC: (PC +1)

 t3: IR�MBR C4

 CR-Read control signal to system bus

 CW-write

Similarly For interrupt &execute cycles… ☺

#Control Unit Implementation :

 Two ways:

 ����Hardwired Implementation

 ����Micro Programmed Implementation

5.)Hardwired Implementation:-

 Figure: Control unit with decode i/p

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

53 | P a g e
Compiled By:- Deepak Kumar Karn

In Hardwired implementation, the CU is essentially combinatorial ckt. Its i/p

logic signals are transformed into a set of logic signals, which are the

control signals. It is implemented through the use of finite no. of gates.

Its design uses a fixed architecture. It requires change in the wiring if the

instruction set is modified or change. This architecture is performed as RISC

(Reduced Instruction Set Computer).

Control Unit I/p:- It is given a decoded o/p from IR.

Control Unit logic:-

 PQ= 00 Fetch

 01 Indirect

 10 Execute

 11 Interrupt

Then the Boolean expression that defines C5: P Q . T2 + P. Q T2 (That is

control signals C5 will be asserted during the second time Unit and both

fetch and indirect cycle)

6.)Micro programmed control (Firm ware):-

 Figure: Functioning of micro programmed control unit

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

54 | P a g e
Compiled By:- Deepak Kumar Karn

__

Micro instruction types:

.

a.) Horizontal Micro-programming:

• Wide memory word

• High degree of parallel operations possible

• Little encoding of control information

b.) Vertical Micro-programming:

• Width is narrow

• n control signals encoded into log2 n bits

• Limited ability to express parallelism

• Considerable encoding of control information requires external

memory word decoder to identify the exact control line being

manipulated

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

55 | P a g e
Compiled By:- Deepak Kumar Karn

Micro Instruction encoding:-

In micro programmed control unit, the logic of CU is specified by micro

program.

 A micro program consists of a sequence of instruction in a

micro programming language. These are the instruction that specify micro

operation.

 Micro instruction sequencing means getting the next micro-

instruction from the control memory. Based on current micro instruction,

condition flags, and the contents of the instruction register, a control

memory address must be generated for the next micro instruction. A wide

variety of techniques have been used. We can group them into three

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

56 | P a g e
Compiled By:- Deepak Kumar Karn

general categories. These categories are based on the format of the

address information in micro- instruction.

� i.) Two address field.

� ii.) Single address filed.

�iii.) Variable field.

i.) Two address field:-

 The simplest approach is to provide two address field in each micro-

instruction. A multiplexer is provided that search as the destination for

both the address plus the instruction register. Based on an address

selection i/p, the multiplexer transmit either the opcode or one of the two

address CAR(Control address register). The CAR is subsequently decoded to

provide the next micro-instruction address. The address selection signals

are provided by a branch logic module whose o/p consist of flags plus bits

from the control portion of micro-instruction. (figure below shows the

branch control logic- two address format).

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

57 | P a g e
Compiled By:- Deepak Kumar Karn

ii.) Single address format:-

 Figure : Branch control logic single address format

With single address field the option of next address are as follows : (i)

address field, (ii)instruction filed, (iii)next sequential address.

The address selection signal determines which option is selected. This

approach reduces the no. of address filed to one. However that the address

filed often will not be used. Thus, there is some inefficiency in micro

instruction coding scheme.

iii.) Variable address filed:-

 It provides two entirely different micro instruction format one

bit designed which format being used. In one format the remaining bits are

used to activate control signal. In other format some bits drives the

branches logic & remaining bits provides the address.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

58 | P a g e
Compiled By:- Deepak Kumar Karn

 With the 1
st

 format, the next address is either the next

sequential address or an address derive from the instruction register. With

the 2
nd

 format, either conditional or unconditional branch being specified.

 Figure: Branch control logic variable format.

Micro instruction execution: the micro instruction is the basic event on the

micro programmed processor. Each cycle is made up of two parts : fetch &

execute. The fetch portion is determined by the generation of micro

instruction address.

 The effect of execution of a micro-instruction is to generate

control signals. Some of these signals control point interval to the

processor. The remaining signals go to the external control bus or other

external interface. As an incidental function, the address of next micro-

instruction is determined.

 The sequencing logic module contains the logic to perform functions.

It generates address of next micro instruction, using as inputs: the

instruction register, ALU flags, the control address register(for

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

59 | P a g e
Compiled By:- Deepak Kumar Karn

incrementing), and the control buffer register. Control buffer register

provide an actual address, control bits or both. The module is driven by

clock that determines the timing of micro instruction cycle.

 The control logic module generates control signals as a function of

some of the bits in the micro instruction. The format and content of micro

instruction determines complexity of control logic module.

Note: Question may ask like: describe the block diagram of micro

programmed or micro instruction sequencing and execution with suitable

block diagram.

ANS:- write the micro instruction sequencing(Two address field, Single

address filed, Variable field). And micro execution only.. ☺

 Some questions:

1.) What is a micro- operation? Write the sequence of micro-operation for

fetch & execute cycles of ADD X, R1 where R1 is a register and X is a

location in memory.

ANS:

 The execution of instruction involves the execution of a sequence of sub

steps generally called cycles. For e.g. an execution may consist of fetch

indirect execute & interrupt cycle. Each cycle is in turn made up of a

sequence of more fundamental operations called micro operations.

Micro-operation of execute cycle for ADD X, R1:

 t1:MAR�(IR address)

 t2:MBR�memory

 t3:R1� R1+MBR

micro-operation of fetch cycle for ADD X, R1:

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

60 | P a g e
Compiled By:- Deepak Kumar Karn

 t1:MAR�PC

 t2:MBR�memory

 t3:IR�MBR

2)What do you mean by micro programming language? Describe the

applications of micro programming?

ANS:

In addition to the use of control of control signals, each micro operation is

described in symbolic motation. The notation suspiciously looks like

programming language. That language is known as micro programming

language.

The application of micro programming are:

i.)Realization of computer.

ii.) imulation

iii.) Operating system support

iv.) Micro diagnostic

3.)what are advantage & disadvantages of hardwired, and micro-

programmed control? Why is micro programmed control becoming

increasingly more popular?

ANS:

=> Advantages of micro-programmed control:-

 � simplifies design of CU

 �cheaper

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

61 | P a g e
Compiled By:- Deepak Kumar Karn

 �less error prone to implement

=>Disadvantages of micro- programmed control:-

 �slower compared to hardwired control

=>Advantages of hardwired control:-

 �faster than micro-programmed control

=>Disadvantages of hardwired control:-

 �instruction set and control logic are directly hid together using

complicated ckts that are difficult to design and modify.

Most of the computers today are micro-programmed. The reason is

basically one of flexibility. Once the CU of hardwired computer is designed

and built, it is virtually impossible to alter its architecture and instruction

set. In micro-programmed computer, however, we can change the

computer’s instruction set by altering the micro-program stored in control

memory. Lets take basic computer as an example, we notice that its four bit

op-code permits Up-to 16 instructions. Therefore we could add seven more

instruction to the instruction set by simply expanding its micro-program, To

do this with hard wired version of computer would require a complete

redesign of controller ckt hardware.

 Another advantage to using micro-programmed control is the fact that

the task of designing the computer in 1
st

place is simplified. The process of

specifying the architecture and instruction set is now one of software

(micro programming) as opposed to hardware design. Nevertheless for

certain applications hard-wires computers are still used. Hence, micro-

programmed control is becoming popular because of above reasons.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

62 | P a g e
Compiled By:- Deepak Kumar Karn

4.) What are the differences between horizontal and vertical micro

instruction. Explain with their diagram.

ANS:

Horizontal micro instruction Vertical micro instruction

1. wide memory card 1. width is narrow

2. little encoding of control

information

2. considerable encoding of control

information.

3. High degree of parallel operations

possible

Draw the figure

3. Limited ability to express

parallelism

Draw the figure.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

63 | P a g e
Compiled By: Deepak Kumar Karn

Chapter 4:- Input / Output Organization

1)Input / Output:-

 Fig: Generic model of I/O model

I/O module:-

�Interface to CPU & memory.

�Interface to one or more peripherals.

Why I/O module:- Instead of directly connecting I/O devices to the system

bus, they are connected through I/O module because

a) Wide variety of peripherals.

b) Delivering different amounts of data.

c) In different speed and formats.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

64 | P a g e
Compiled By: Deepak Kumar Karn

 External devices:- We can broadly classify external devices into three

categories:

 • Human readable: Suitable for communicating with the computer user

 • Machine readable: Suitable for communicating with equipment

 • Communication: Suitable for communicating with remote devices

Examples of human-readable devices are video display terminals (VDTs)

and printers. Examples of machine-readable devices are magnetic disk and

tape systems, and sensors and actuators, such as are used in a robotics

application.

Communication devices allow a computer to exchange data with a remote

device, which may be a human-readable device, such as a terminal, a

machine-readable device, or even another computer.

 Figure 1: Block diagram of external devices.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

65 | P a g e
Compiled By: Deepak Kumar Karn

In very general terms, the nature of an external device is indicated in

Figure1. The interface to the I/O module is in the form of control, data, and

status signals. Control signals determine the function that the device will

perform, such as send data to the I/O module (INPUT or READ), accept

data from the I/O module (OUTPUT or WRITE), report status, or perform

some control function particular to the device (e.g., position a disk head).

Data are in the form of a set of bits to be sent to or received from the I/O

module. Status signals indicate the state of the device. Examples are

READY/NOT-READY to show whether the device is ready for data transfer.

Control logic associated with the device controls the device’s operation in

response to direction from the I/O module. The transducer converts data

from electrical to other forms of energy during output and from other

forms to electrical during input. Typically, a buffer is associated with the

transducer to temporarily hold data being transferred between the I/O

module and the external environment; a buffer size of 8 to 16 bits is

common.

2.) Functions of I/O module:-

The major functions or requirements for an I/O module fall into the

following categories:

 • Control and timing

 • Processor communication

 • Device communication

 • Data buffering

 • Error detection

The internal resources, such as main memory and the system bus, must be

shared among a number of activities, including data I/O. Thus, the I/O

function includes a control and timing requirement, to coordinate the flow

of traffic between internal re-sources and external devices.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

66 | P a g e
Compiled By: Deepak Kumar Karn

If the system employs a bus, then each of the interactions between the

processor and the I/O module involves one or more bus arbitrations. The

preceding simplified scenario also illustrates that the I/O module must

communicate with the processor and with the external device.

On the other side, the I/O module must be able to perform device

communication. This communication involves commands, status

information, and data.

An essential task of an I/O module is data buffering. The transfer rate into

and out of main memory or the processor is quite high, the rate is orders of

magnitude lower for many peripheral devices and covers a wide range.

Data coming from main memory are sent to an I/O module in a rapid burst.

The data are buffered in the I/O module and then sent to the peripheral

device at its data rate. In the opposite direction, data are buffered so as not

to tie up the memory in a slow transfer operation. Thus, the I/O module

must be able to operate at both device and memory speeds. Similarly, if the

I/O device operates at a rate higher than the memory access rate, then the

I/O module performs the needed buffering operation.

Finally, an I/O module is often responsible for error detection and for

subsequently reporting errors to the processor. One class of errors includes

mechanical and electrical malfunctions reported by the device (e.g., paper

jam, bad disk track).Another class consists of unintentional changes to the

bit pattern as it is transmitted from device to I/O module. Some form of

error-detecting code is often used to detect transmission errors. A simple

example is the use of a parity bit on each character of data. For example,

the IRA character code occupies 7 bits of a byte. The eighth bit is set so that

the total number of 1s in the byte is even (even parity) or odd (odd parity).

When a byte is received, the I/O module checks the parity to determine

whether an error has occurred.

3.) I/O Steps, block diagram of I/O and Three Techniques of I/O:

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

67 | P a g e
Compiled By: Deepak Kumar Karn

I/O steps

• CPU checks I/O module device status

• I/O module returns status

• If ready, CPU requests data transfer

• I/O module gets data from device

• I/O module transfers data to CPU

• Variations for output, DMA, etc.

Block Diagram of I/O

Figure shows the structure of an I/O module. It varies considerably in

complexity and the no. of external devices they control.

A status register may also function a control register to accept detailed

control information from processor. An I/O module function to allow the

processor to view wide range of device in a simple minded way. I/O module

may hide the detail of timing formats and the electro-mechanic of an

external device so that the processor can function in terms of simple

read/write commands. It all logical instruction that is needed for external

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

68 | P a g e
Compiled By: Deepak Kumar Karn

devices and processor relief from same extra work and speed up the overall

performance of computer.

Three techniques of I/O operation:

i.) Programmed I/O:-

Programmed I/O (PIO) refers to data transfers initiated by a CPU under

driver software control to access registers or memory on a device.

The CPU issues a command then waits for I/O operations to be complete.

As the CPU is faster than the I/O module, the problem with programmed

I/O is that the CPU has to wait a long time for the I/O module of concern to

be ready for either reception or transmission of data. The CPU, while

waiting, must repeatedly check the status of the I/O module, and this

process is known as Polling. As a result, the level of the performance of the

entire system is severely degraded.

Programmed I/O basically works in these ways:

�CPU requests I/O operation

�I/O module performs operation

�I/O module sets status bits

�CPU checks status bits periodically

�I/O module does not inform CPU directly

�I/O module does not interrupt CPU

�CPU may wait or come back later

 (see figure below (a))

ii.) Interrupt driven I/O:-

The CPU issues commands to the I/O module then proceeds with its normal

work until interrupted by I/O device on completion of its work.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

69 | P a g e
Compiled By: Deepak Kumar Karn

For input, the device interrupts the CPU when new data has arrived and is

ready to be retrieved by the system processor. The actual actions to

perform depend on whether the device uses I/O ports, memory mapping.

For output, the device delivers an interrupt either when it is ready to accept

new data or to acknowledge a successful data transfer. Memory-mapped

and DMA-capable devices usually generate interrupts to tell the system

they are done with the buffer.

Although Interrupt relieves the CPU of having to wait for the devices, but it

is still inefficient in data transfer of large amount because the CPU has to

transfer the data word by word between I/O module and memory.

Below are the basic operations of Interrupt:

�CPU issues read command

�I/O module gets data from peripheral whilst CPU does other work

�I/O module interrupts CPU

�CPU requests data

�I/O module transfers data

 (See figure below (b))

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

70 | P a g e
Compiled By: Deepak Kumar Karn

iii.) Direct Memory Access:-

Direct Memory Access (DMA) means CPU grants I/O module authority to

read from or write to memory without involvement. DMA module controls

exchange of data between main memory and the I/O device. Because of

DMA device can transfer data directly to and from memory, rather than

using the CPU as an intermediary, and can thus relieve congestion on the

bus. CPU is only involved at the beginning and end of the transfer and

interrupted only after entire block has been transferred.

Direct Memory Access needs a special hardware called DMA controller

(DMAC) that manages the data transfers and arbitrates access to the

system bus. The controllers are programmed with source and destination

pointers (where to read/write the data), counters to track the number of

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

71 | P a g e
Compiled By: Deepak Kumar Karn

transferred bytes, and settings, which includes I/O and memory types,

interrupts and states for the CPU cycles.

DMA increases system concurrency by allowing the CPU to perform tasks

while the DMA system transfers data via the system and memory busses.

Hardware design is complicated because the DMA controller must be

integrated into the system, and the system must allow the DMA controller

to be a bus master. Cycle stealing may also be necessary to allow the CPU

and DMA controller to share use of the memory bus.

4.)Simple Interrupt Processing and Interrupt Design Issue:

Interrupt Design Issue:

I.) How does processor determine which device issued the interrupt?

II.) If multiple interrupt occurs, how does processor decide which one to

process??

Simple Interrupt Processing:

Shown in figure

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

72 | P a g e
Compiled By: Deepak Kumar Karn

5.) Direct Memory Access (DMA):-

In both programmed I/o & Interrupt driver I/O processor is involved. In

DMA, the I/O module & main memory exchange data directly without

processor involvement.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

73 | P a g e
Compiled By: Deepak Kumar Karn

 Figure: Typical DMA block diagram.

�When Processor wishes to read or write a block of data, It issues a

command to the DMA module.

�Read or Write is requested through the read or write control.

�Data lines used for communication between I/O devices.

�The no. of words to be read or written are stored in data count registers.

�Address register store starting location in memory to be need or written.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

74 | P a g e
Compiled By: Deepak Kumar Karn

�DMA involves an additional module on the system bus. DMA module

takes control of the system from the processor. For this purpose the DMA

module must force the processor to suspend operation temporarily. This

technique is referred to as cycle stealing because the DMA module in effect

steals a bus cycle.

Types of DMA Transfer modes:

 DMA can be configured in variety of ways:

 i) Single Bus detached DMA:

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

75 | P a g e
Compiled By: Deepak Kumar Karn

As with processor controlled I/O each transfer requires two bus cycle.

ii.) Single-Bus integrated DMA:

6.) I/O Channels:-

�I/O channels represents an extension of DMA concept.

�Channel has the ability to execute I/O instruction which gives it complete

control over I/O operation.

�In a computer system with such instruction are stored in main memory

to be executed by a special purpose processor in the I/O channel itself.

�Thus, CPU initiate an I/O transfer by instructing the I/O channel to

execute a program in memory. The I/O channel follows these instruction &

control the data transfer.

Two types of I/O channel. They are:

a) Selector

b) Multiplexer

Selector & Multiplexer

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

76 | P a g e
Compiled By: Deepak Kumar Karn

�A selector channel control multiple high speed devices & at any one time

is dedicated to transfer of data with one of those devices. Each device or a

small set of devices is handled by a controller or I/O module.

�A multiplexer channel can handle I/O with multiple devices at the same

time. For low speed devices, a byte multiplexer accepts or transmit

character as fast as possible to multiple devices.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

77 | P a g e
Compiled By: Deepak Kumar Karn

Some Questions:

1.) Explain the operation of DMA data transfer?

ANS:

 DMA controllers vary as to the type of DMA transfers and the number of

DMA channels they support. The two types of DMA transfers are flyby DMA

transfers and fetch-and-deposit DMA transfers. The three common transfer

modes are single, block, and demand transfer modes. These DMA transfer

types and modes are described in the following paragraphs.

 The fastest DMA transfer type is referred to as a single-cycle, single-

address, or flyby transfer. In a flyby DMA transfer, a single bus operation is

used to accomplish the transfer, with data read from the source and

written to the destination simultaneously. In flyby operation, the device

requesting service asserts a DMA request on the appropriate channel

request line of the DMA controller. The DMA controller responds by gaining

control of the system bus from the CPU and then issuing the pre-

programmed memory address. Simultaneously, the DMA controller sends a

DMA acknowledge signal to the requesting device. This signal alerts the

requesting device to drive the data onto the system data bus or to latch the

data from the system bus, depending on the direction of the transfer. In

other words, a flyby DMA transfer looks like a memory read or write cycle

with the DMA controller supplying the address and the I/O device reading

or writing the data. Because flyby DMA transfers involve a single memory

cycle per data transfer, these transfers are very efficient; however,

memory-to-memory transfers are not possible in this mode.

 The second type of DMA transfer is referred to as a dual-cycle, dual-

address, flow-through, or fetch-and-deposit DMA transfer. As these names

imply, this type of transfer involves two memory or I/O cycles. The data

being transferred is first read from the I/O device or memory into a

temporary data register internal to the DMA controller. The data is then

written to the memory or I/O device in the next cycle. Figure 3 shows the

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

78 | P a g e
Compiled By: Deepak Kumar Karn

fetch and- deposit DMA transfer signal protocol. Although inefficient

because the DMA controller performs two cycles and thus retains the

system bus longer, this type of transfer is useful for interfacing devices with

different data bus sizes. For example, a DMA controller can perform two

16-bit read operations from one location followed by a 32-bit write

operation to another location. A DMA controller supporting this type of

transfer has two address registers per channel (source address and

destination address) and bus-size registers, in addition to the usual transfer

count and control registers. Unlike the flyby operation, this type of DMA

transfer is suitable for both memory-to-memory and I/O transfers.

 In addition to DMA transfer types, DMA controllers have one or more

DMA transfer modes. Single, block, and demand are the most common

transfer modes. Single transfer mode transfers one data value for each

DMA request assertion. This mode is the slowest method of transfer

because it requires the DMA controller to arbitrate for the system bus with

each transfer. This arbitration is not a major problem on a lightly loaded

bus, but it can lead to latency problems when multiple devices are using

the bus. Block and demand transfer modes increase system throughput by

allowing the DMA controller to perform multiple DMA transfers when the

DMA controller has gained the bus. For block mode transfers, the DMA

controller performs the entire DMA sequence as specified by the transfer

count register at the fastest possible rate in response to a single DMA

request from the I/O device. For demand mode transfers, the DMA

controller performs DMA transfers at the fastest possible rate as long as the

I/O device asserts its DMA request. When the I/O device un-asserts this

DMA request, transfers are held off.

2.) Why can peripherals not connected to the system bus?

ANS:

The reason for using I/O module to connect external device, not directly to

the system bus are as follows:

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

79 | P a g e
Compiled By: Deepak Kumar Karn

�There are wide range of peripherals with various methods of operation.

It would be impractical to available all logics in processors.

�The data transfer rate of peripherals is often much slower than that of

processor. Thus it is impractical to use high speed system bus to

communicate directly with a peripherals.

�On the other hand, the data transfer rate of some peripherals is faster

than that of memory and again mismatch would occur.

�Peripherals often use different data format and word length than the

computer to which they are attached.

3.) compare and contrast between programmed & interrupt driven I/O.

ANS:

In programmed I/O, the instruction of I/O modules execute by issuing a

command to the appropriate I/O module, the I/O module will perform the

requested action and then set the appropriate bit in the I/O status register.

Then I/O module takes no further action to the microcontroller. So it

responsibility of the processor periodically to check the status of I/O

module until it find operation is complete.

But in interrupt driven I/O the processor has not wait long time for I/O

module of concern to be ready for either reception or transmission of data.

In this type of I/O processor issue an I/O command to a module and then go

on to do some useful work. The I/O module interrupts the processor to

request service when it is ready to exchange data with processor.

4.) Explain I/O module and its usage?

ANS:

Input-output interface provides a method for transferring information

be-tween internal storage and external I/O devices. Peripherals connected

to a computer need special communication links for interfacing them with

the central processing unit. The purpose of the communication link is to

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

80 | P a g e
Compiled By: Deepak Kumar Karn

resolve the differences that exist between the central computer and each

peripheral. The major differences are:

1. Peripherals are electromechanical and electromagnetic devices and their

manner of operation is different from the operation of the CPU and

memory, which are electronic devices. Therefore, a conversion of signal

values may be required.

2. The data transfer rate of peripherals is usually slower than the transfer

rate of the CPU, and consequently, a synchronization mechanism may be

needed.

3. Data codes and formats in peripherals differ from the word format

in the CPU and memory.

4. The operating modes of peripherals are different from each other

and each must be controlled so as not to disturb the operation of other

peripherals connected to the CPU.

Input/Output Module

• Interface to CPU and Memory

• Interface to one or more peripherals

• GENERIC MODEL OF I/O DIAGRAM 6.1

I/O Module Function

• Control & Timing

• CPU Communication

• Device Communication

• Data Buffering

• Error Detection

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

81 | P a g e
Compiled By: Deepak Kumar Karn

I/O Steps

• CPU checks I/O module device status

• I/O module returns status

• If ready, CPU requests data transfer

• I/O module gets data from device

• I/O module transfers data to CPU

• Variations for output, DMA, etc.

I/O Module Decisions

• Hide or reveal device properties to CPU

• Support multiple or single device

• Control device functions or leave for CPU

• Also O/S decisions

Q e.g. Unix treats everything it can as a file

Input Output Techniques

• Programmed

• Interrupt driven

• Direct Memory Access (DMA)

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

82 | P a g e
Compiled By: Deepak Kumar Karn

Chapter 5: Memory Organization

1.) Memory Hierarchy:-

Memory of computer is broadly divided into two categories.

 �Internal

 �External

Internal memory is used by CPU to perform task & External memory is used

to store bulk information.

Main Memory Hierarchy:

i.) Register

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

83 | P a g e
Compiled By: Deepak Kumar Karn

ii.) Cache memory

iii.) Main memory

iv.) Magnetic Disk

v.) Removal Disk.

2.) Cache Memory:

• Small amount of fast memory

• Sits between normal main memory and CPU

• May be located on CPU chip or module

 Figure: Single Cache

Cache memory is random access memory (RAM) that a computer

microprocessor can access more quickly than it can access regular RAM. As

the microprocessor processes data, it looks first in the cache memory and if

it finds the data there (from a previous reading of data), it does not have to

do the more time-consuming reading of data from larger memory.

 Faster fast less fast slow

 figure: Three level cache Organization.

CPU LEVEL 1

Cache

LEVEL 2

Cache

LEVEL 3

Cache

Main

memory

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

84 | P a g e
Compiled By: Deepak Kumar Karn

Cache Read/ Write Policy:

Read policy: when a processor starts a read cycle the cache checks to see if

that address is a cache hit.

Cache HIT: If the cache contains the memory location, then cache will

respond to the read cycle & terminates the bus cycle.

Miss: If the cache does not contain the memory location, then main

memory will respond to the processor & terminate the bus cycle. The cache

will snarf (write itself) the data, so next time the processor request this

data; it will be a cache hit.

 Write policy: two common policies

i.)Write-Back Policy:

 It acts like a buffer i.e. when the processor starts the write cycle the

cache receives the data and terminates the cycle. The cache then writes the

data back to main memory, when the data system bus is available &

provides greatest performance but it increases complexity & cost.

 ii.)Write-Through Policy:

The processor writes through the cache to main memory. This method is

less complex and expensive but has lower performance.

Figure shown below shows the Cache Read Operation

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

85 | P a g e
Compiled By: Deepak Kumar Karn

3.) Cache-Main Memory Structure:

�Main memory consists of upto addressable words with each word

having a unique n-bit address.

�For mapping purpose, this memory is considered to consist of a number

of fixed length of K words each.

�There are M= /K blocks in main memory.

�The Cache consist of m blocks called lines.

�Each line contains K words plus a tag of few bits.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

86 | P a g e
Compiled By: Deepak Kumar Karn

�The length of a line not including tag and control bits is the line size.

 CPU Organization of Cache:-

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

87 | P a g e
Compiled By: Deepak Kumar Karn

4.) Mapping function:-

Used to map a particular block of main memory to a particular block of

main memory to a particular block of cache. The mapping function is used

to transfer the block from main memory to cache memory. Three mapping

function exists.

i.) Direct mapping

ii.) Associative mapping

iii.) Set Associative mapping

i.) Direct Mapping:

• Address length = (s + w) bits

• Number of addressable units = 2s+w words or bytes

• Block size = line size = 2w words or bytes

• Number of blocks in main memory = 2s+ w/2w = 2s

• Number of lines in cache = m = 2r

• Size of tag = (s – r) bits

In direct mapping, block K of main memory maps into block k modulo m

(K%m) of the cache. Here m is the total no. of blocks in cache. Here value of

m is 128.

Direct mapping pros n cons:

• Simple

• Inexpensive

• Fixed location for given block

— If a program accesses 2 blocks that map to the same line

repeatedly, cache misses are very high

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

88 | P a g e
Compiled By: Deepak Kumar Karn

 Figure: Direct mapping.

 Figure: example of direct mapping.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

89 | P a g e
Compiled By: Deepak Kumar Karn

ii.)Associative Mapping:

• Address length = (s + w) bits

• Number of addressable units = 2s+w words or bytes

• Block size = line size = 2w words or bytes

• Number of blocks in main memory = 2s+ w/2w = 2s

• Number of lines in cache = undetermined

• Size of tag = s bits

 In this mapping technique, any block of main memory can potentially

reside in any cache block position. It is much more flexible mapping

technique.

 Figure: Associative Mapping

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

90 | P a g e
Compiled By: Deepak Kumar Karn

 Figure: Example of Associative mapping

When the processor wants an address, all tag filed in the cache are checked

to see if the data is already in cache.

iii.) Set Associative mapping:

• Address length = (s + w) bits

• Number of addressable units = 2s+w words or bytes

• Block size = line size = 2w words or bytes

• Number of blocks in main memory = 2d

• Number of lines in set = k

• Number of sets = v = 2d

• Number of lines in cache = kv = k * 2d

• Size of tag = (s – d) bits

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

91 | P a g e
Compiled By: Deepak Kumar Karn

In this method blocks of cache are grouped into sets, & the mapping allows

a block of main memory to reside in any block of a specific set. From the

flexibility point of view it is between the other two method.

This reduced searching overhead, because the search is restricted to no. of

sets, instead of no. of block.

 figure : set associative mapping

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

92 | P a g e
Compiled By: Deepak Kumar Karn

 Figure: Example of set-associative

Some questions:

1. what are page replacement in cache?

ANS:

Replacement Algorithms

Direct mapping

• No choice

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

93 | P a g e
Compiled By: Deepak Kumar Karn

• Each block only maps to one line

• Replace that line

Replacement Algorithms

Associative & Set Associative

• Hardware implemented algorithm (speed)

• Least Recently used (LRU)

• e.g. in 2 ways set associative

— Which of the 2 block is lru?

• First in first out (FIFO)

— replace block that has been in cache longest

• Least frequently used

— replace block which has had fewest hits

• Random

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

94 | P a g e
Compiled By:- Deepak Kumar Karn

Chapter 6: RISC, CISC and Pipelining Techniques

1.) Parallel processing or multi processing:

�A parallel processing system is able to perform concurrent data

processing to achieve faster execution time.

�The system may have two or more ALU and be able to execute two or

more instruction at the same time.

�Parallel processing increase the amount of h/w required.

�Parallel processing can be achieved through

 i.) Pipelining processing

 ii.)Vector processing

 iii.) Array processor

Pipelining: It is a technique of decomposing a sequential process into sub-

operations with each sub-process being execute in a special dedicated

segment that operates concurrently with all other segments.

The result obtained from the computation in each segment is transferred to

the next segment in the pipeline.

Example:

Ai*Bi+C For i=1,2,3,…..7

The sub-operations performed in each segments are:

 R1Ai; , R2Bi

 R3R1*R2 , R4Ci

 R5R3+R4

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

95 | P a g e
Compiled By:- Deepak Kumar Karn

Clock pulse no. Segment 1

R1 R2

Segment 2

R3 R4

Segment 3

R5

1 A1 B1

2 A2 B2 A1*B1 C1

3 A3 B3 A2*B2 C2 A1*B1+C1

4 A4 B4 A3*B3 C3 A2*B2+C2

5 A5 B5 A4*B4 C4 A3*B3+C3

6 A6 B6 A5*B5 C5 A4*B4+C4

7 A7 B7 A6*B6 C6 A5*B5+C5

 Figure : four segment pipeline

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

96 | P a g e
Compiled By:- Deepak Kumar Karn

Segments 1 2 3 4 5 6 7 8 9

1 T1 T2 T3 T4 T5 T6

2 T1 T2 T3 T4 T5 T6

3 T1 T2 T3 T4 T5 T6

4 T1 T2 T3 T4 T5 T6

Let us consider 6 tasks T1 through T6 executed 4 segments.

Serial execution total time Ts=? = 6*4 = 24 time units

Parallel execution total time= Tp = (4+6-1)= 9 time unit

Speed Up Ratio= Ts/Tp = 24/9

Q. A non pipeline system takes 50 ns to process a task. The same task can

be processed in six segment pipeline with a clock cycle of 10 ns. Determine

the speed up ratio of the pipeline for 100 tasks. What is maximum speed

up that can be achieved?

ANS:

tn=50 ns, k=6, tp=10ns, n=100

Then,

Speed Up Ratio= n tn/[(k+n-1)*10]

 = 100*10/[(6+99)*10]

 = 4.76

Smax= tn/tp

 = 50/10 =5

Therefore, Smax= 5

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

97 | P a g e
Compiled By:- Deepak Kumar Karn

Arithmetic Pipeline:

 Figure : Pipeline for floating point addition & subtraction

�X=0.9504*10^3

 Y=0.8260*10^2

�The two exp are subtracted in segment 1 to get 3-2=1

�The larger exp 3 is choose as the exp result.

�Segment 2 shifts the mantissa of Y to the right to obtain Y=0.0820*10^3

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

98 | P a g e
Compiled By:- Deepak Kumar Karn

�Mantissas are now aligned.

�Segment 3 produces the sum

 Z= 1.0324*10^3

�Segment 4 normalizes the result by shifting the mantissa once to the

right & incrementing the exp by 1, to obtain,

 Z=0.1032*10^4

Instruction Pipeline:

 Following steps are needed to process each instruction.

i.)Fetch the instruction from memory.

ii.)Decode the instruction.

iii.)Calculate the effective address.

iv.)Fetch the operand from memory.

v.)Execute the instruction

vi.)Store the result in proper place.

 Step 2 & 3 and 5 & 6 can be merged as

i.)FI is the segment that fetches instruction.

ii.)DA is the segment that decodes instruction and calculated the effective

address.

iii.)FO is the segment that fetches operands

iv.)EX is the segment that execute & store results.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

99 | P a g e
Compiled By:- Deepak Kumar Karn

 Figure : a.) Timing of instruction pipeline

 b.) 4 segment CPU pipeline.

Pipelining Hazards:

 These are the situations, called Hazard that prevent the next

instruction in the instruction stream from being executing during its

designated clock cycles. Hazards reduce the performance from ideal speed

up gained by the processor.

a

b

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

100 | P a g e
Compiled By:- Deepak Kumar Karn

Three types of Hazards

i.) Structural Hazards:

■ Due to the non-availability of appropriate hardware

■ One obvious way of avoiding structural hazard is to insert additional

hardware into the pipeline.

 or

 Occur when some resource has not been duplicated enough to allow

all combinations of instructions in the pipeline to execute.

 OR simply

Hazards occur when instruction needs a resource being used by another

instruction.

 Example: With one memory-port, a data and an instruction fetch cannot

be initiated in the same clock

The Pipeline is stalled for a structural hazard

 Two Loads with one port memory

 �Two-port memory will serve without stall

ii.)Data Hazards:

 They arise when an instruction depends on the result of

previous instruction.

 3- Situations:

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

101 | P a g e
Compiled By:- Deepak Kumar Karn

 1. Read after write (RAW)

 I1:R2R1+R3

 I2:R3R2+R3

 2. Write after read (WAR)

 I1:R4R1+R3

 I2:R3R1+R2

 3. Write after write (WAW)

 I1:R2R4+R7

 I2:R2R1+R3

ii.) Control Hazards:

■ Conditional branch instructions

– The target address of branch will be known only after the

evaluation of the condition.

■ The ways to solve control hazards

– The pipeline is frozen

– The pipeline predicts that the branch will not be taken.

– It would be to start fetching the target instruction sequence

into a buffer while the non-branch sequence is being fed into

the pipeline.

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

102 | P a g e
Compiled By:- Deepak Kumar Karn

2.) RISC and CISC:

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

103 | P a g e
Compiled By:- Deepak Kumar Karn

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

104 | P a g e
Compiled By:- Deepak Kumar Karn

RISC PIPELINE

RISC

 - Machine with a very fast clock cycle that executes at the rate of one

instruction per cycle

 <- Simple Instruction Set

 Fixed Length Instruction Format

 Register-to-Register Operations

Instruction Cycles of Three-Stage Instruction Pipeline

 �Data Manipulation Instructions

 I: Instruction Fetch

 E: Decode, Read Registers, ALU Operations

 D: Write a Register

 � Load and Store Instructions

 I: Instruction Fetch

 E: Decode, Evaluate Effective Address

 D: Register-to-Memory or Memory-to-Register

 �Program Control Instructions

 I: Instruction Fetch

 E: Decode, Evaluate Branch Address

 D: Write Register (PC)

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

105 | P a g e
Compiled By:- Deepak Kumar Karn

Sequential Execute(shown below)

Load AM I E D

Load BM I E D

Add CA+B I E

Store M C I E D

Branch X I E

Two way pipeline (shown below)

Load AM I E D

Load BM I E D

Add CA+B I E

Store M C I E D

Branch X I E

Here I & E of two different instructions are performed simultaneously.

3-way pipelined timing (shown below)

Load AM I E D

Load BM I E D

Noop I E

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

106 | P a g e
Compiled By:- Deepak Kumar Karn

Add CA+B I E

Store M C I E D

Branch X I E

Noop I E

3.) Flynn’s Taxonomy:-

 • Single Instruction stream, Single Data stream (SISD)

 – Conventional uniprocessor

 – Although ILP is exploited

 • Single Program Counter -> Single Instruction stream

 • The data is not “streaming”

• Single Instruction stream, Multiple Data stream (SIMD)

 – Popular for some applications like image processing

 – One can construe vector processors to be of the SIMD type.

 – MMX extensions to ISA reflect the SIMD philosophy

 • Also apparent in “multimedia” processors (Equator Map-1000)

 – “Data Parallel” Programming paradigm

• Multiple Instruction stream, Single Data stream (MISD)

 – Until recently no processor that really fits this category

 – “Streaming” processors; each processor executes a kernel on a

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

107 | P a g e
Compiled By:- Deepak Kumar Karn

 stream of data

 – Maybe VLIW?

• Multiple Instruction stream, Multiple Data stream (MIMD)

 – The most general

 – Covers:

 • Shared-memory multiprocessors

 • Message passing multicomputers (including networks of

 workstations cooperating on the same problem; grid

 computing)

Some Questions

1.) Explain the followings..

ANS:

Prefetch Target Instruction

 – Fetch instructions in both streams, branch not taken and branch taken

 – Both are saved until branch branch is executed. Then, select the right

 instruction stream and discard the wrong stream

Branch Target Buffer(BTB; Associative Memory)

 – Entry: Addr of previously executed branches; Target instruction

 and the next few instructions

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

108 | P a g e
Compiled By:- Deepak Kumar Karn

 – When fetching an instruction, search BTB.

 – If found, fetch the instruction stream in BTB;

 – If not, new stream is fetched and update BTB

Loop Buffer(High Speed Register file)

 – Storage of entire loop that allows to execute a loop without accessing

 memory

Branch Prediction

 – Guessing the branch condition, and fetch an instruction stream based

 on

 the guess. Correct guess eliminates the branch penalty

Delayed Branch

 – Compiler detects the branch and rearranges the instruction sequence

 by inserting useful instructions that keep the pipeline busy

 in the presence of a branch instruction

2.)Compare and contrast RISC Vs CISC processor.

ANS:

RISC CISC

1. Multiple register set often

consisting of more than 256

registers.

1. Single resistor set typically 6

to 16 registers in total

2. three register operands

allowed per instruction

e.g. Add R1, R2, R3

2. One or two register allowed

per instruction.

e.g. Add R1, R2

3. Hardware control 3. micro programmed control

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

https://www.studocu.com/row?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=computer-architecture-note-according-to-pu-syllabus-by-karn

109 | P a g e
Compiled By:- Deepak Kumar Karn

4. Highly pipelined 4. less pipelined

5. Simple in instructions that

are few in number

5. many complex instructions

6. Fixed length instruction 6. variable length instructions

7. complexity in compiler 7. complexity in micro-code

8. Few address modes 8. Many addressing modes

9. only load and stored

instruction can access memory

9. Many instruction can access

memory

10. single cycle instructions

(except for load and store)

10. Multiple cycle instruction

11. parameter passing through

efficient on chip register

windows

11. parameter passing through

inefficient chip memory

12. reduced instruction set

computer

12. complex instruction set

computer

Downloaded by Bot Kc (botbecomp@gmail.com)

lOMoARcPSD|54475180

